
A Large, Fast Instruction Window for A Large, Fast Instruction Window for
Tolerating Cache MissesTolerating Cache Misses

Alvin R. Lebeck
Tong Li

Jaidev Patwardhan

Department of Computer Science
Duke University

{alvy,tongli,jaidev}@cs.duke.edu

Eric Rotenberg
Jinson Koppanalil

Department of Electrical and Computer
Engineering

North Carolina State University
{jjkoppan,ericro}@ece.ncsu.edu

A Dynamically Scheduled Processor A Dynamically Scheduled Processor
(Alpha 21264)(Alpha 21264)

Instruction
Cache

Integer
Register
Rename

FP
Register
Rename

Integer
Issue

Queue

FP
Issue

Queue

Integer
Reg File

FP
Reg File

INT
Exec

FP
Exec

Data
Cache

Fetch Slot ExecuteRename Issue MemoryRegister Read

Active List

Ø Active list: keeps in-flight instructions in program order (the retire unit in the
21264)

Ø Issue queues: keep waiting instructions and issues ready instructions
Ø Instruction window = Active list + Issue queues
Ø We want thousands of instructions in-flight to exploit ILP

3

Instruction Window Size EffectsInstruction Window Size Effects

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Integer FP Olden

S
pe

ed
up

32

64

128

256

512

1K

2K

4K

Ø 32, 64, and 128 have 128-entry active list, all others have active list
size same as instruction window (issue queue) size

Ø Larger window, higher IPC, most plateau beyond 2K
Ø 2K vs. 32 (base): Integer 35%, FP 140%, Olden 103%

4

Towards a Large Instruction WindowTowards a Large Instruction Window

Ø Larger instruction window, more ILP exposed
Ø Larger instruction window, slower clock (Palacharla et al.

ISCA’97, Agarwal et al. ISCA’00)
• Active list can be large because it’s not on critical path
• Issue queue doesn’t scale due to complex wakeup/select

Goal: Support large instruction window without affecting
clock cycle time

5

Problem of Conventional DesignProblem of Conventional Design

ld

add

add

sll

r1, 1024(r0)

r3, r1, r2

r4, r1, r4

r3, 0x4, r3

sub

add

ld

add

r6, 256(r5)

r4, r4, r2

r5, r3, r4

r6, r6, r0

Execution
Instruction
Dispatch

Issued
Issue Queue

6

The Big IdeaThe Big Idea

Ø Problem:
• Instructions dependent on a long latency operation

(e.g., cache miss) waste issue queue entries!
• No new instructions are able to come into the window.

Ø Our Solution:
• Move instructions dependent on a long latency

operation to a waiting instruction buffer (WIB)
• Reinsert all dependent instructions from WIB back to

issue queue when the long latency operation finishes

7

OutlineOutline

Ø Motivation
Ø The Waiting Instruction Buffer (WIB)

• Design and implementation

Ø Results
• Average speedups:

–SPEC2000 Integer 20%
–SPEC2000 FP 84%
–Olden 50%

Ø Conclusion

8

The Waiting Instruction BufferThe Waiting Instruction Buffer

Ø Move instructions dependent on a long latency operation
to a waiting instruction buffer (WIB)

Ø Reinsert all dependent instructions from WIB back to
issue queue when the long latency operation finishes

Ø WIB has simple wakeup/select

Key:
Ø No full dependence checking in the WIB
Ø WIB only tracks which long latency operation instructions

depend on

FP L1
Reg File

Int L1
Reg File

WIBWIB--based Architecturebased Architecture

Instruction
Cache

Integer
Register
Rename

FP
Register
Rename

Integer
Issue

Queue

FP
Issue

Queue

Int L2
Reg File

FP L2
Reg File

Integer
Exec

FP
Exec

Data
Cache

Fetch Slot ExecuteRename Issue MemoryRegister Read

Waiting Instruction Buffer

Active List

10

ld r1, 1024(r0)ld r1, 1024(r0)

add r3, r1, r2

add r4, r1, r4

sll r3, 0x4, r3

Issue
Queue

How the WIB WorksHow the WIB Works

Waiting Instruction Buffer

Functional
Unit

Data
Cache

Instruction
Dispatch

Issued

sub

add

ld

add

r6, 256(r5)

r4, r4, r2

r5, r3, r4

r6, r6, r0

11

sll r3, 0x4, r3

Issue
Queue

How the WIB WorksHow the WIB Works

Waiting Instruction Buffer

Functional
Unit

Data
Cache

Instruction
Dispatch

Cache
Miss

Load miss on r1

add r3, r1, r2

add r4, r1, r4

sub

add

ld

add

r6, 256(r5)

r4, r4, r2

r5, r3, r4

r6, r6, r0

12

Issue
Queue

How the WIB WorksHow the WIB Works

Waiting Instruction Buffer

Functional
Unit

Data
Cache

Instruction
Dispatch

Cache
Miss

sll r3, 0x4, r3

add r3, r1, r2

add r4, r1, r4

sub

add

ld

add

r6, 256(r5)

r4, r4, r2

r5, r3, r4

r6, r6, r0

13

Issue
Queue

How the WIB WorksHow the WIB Works

Waiting Instruction Buffer

Functional
Unit

Data
Cache

Instruction
Dispatch

Cache
Miss

r3, r4

sll r3, 0x4, r3

sub

add

ld

add

r6, 256(r5)

r4, r4, r2

r5, r3, r4

r6, r6, r0

14

Issue
Queue

How the WIB WorksHow the WIB Works

Waiting Instruction Buffer

Functional
Unit

Data
Cache

Instruction
Dispatch

Cache
Miss

add

ld

add

r6, 256(r5)

r5, r3, r4

r6, r6, r0

r3, r4

15

Issue
Queue

How the WIB WorksHow the WIB Works

Waiting Instruction Buffer

Functional
Unit

Data
Cache

Instruction
Dispatch

Cache
Miss

add

ld

add

r6, 256(r5)

r5, r3, r4

r6, r6, r0

xor r7, r0, r1

r6, 0x4, r6

r7, r0, r7

r7, r6, r7

sll

sub

add

Depends on
the load miss

r3, r4

16

Issue
Queue

How the WIB WorksHow the WIB Works

Waiting Instruction Buffer

Functional
Unit

Data
Cache

Instruction
Dispatch

Cache
Miss

ld

add

r6, 256(r5)

r6, r6, r0

r6, 0x4, r6

r7, r0, r7

r7, r6, r7

sll

sub

add

r5, r7

17

Issue
Queue

How the WIB WorksHow the WIB Works

Waiting Instruction Buffer

Functional
Unit

Data
Cache

Instruction
Dispatch

ld

add

r6, 256(r5)

r6, r6, r0

r6, 0x4, r6

r7, r0, r7

r7, r6, r7

sll

sub

add
Miss resolved

18

Issue
Queue

How the WIB WorksHow the WIB Works

Waiting Instruction Buffer

Functional
Unit

Data
Cache

Instruction
Dispatch

ld

add

r6, 256(r5)

r6, r6, r0

r6, 0x4, r6

r7, r0, r7

r7, r6, r7

sll

sub

add

sll r3, 0x4, r3

add r3, r1, r2

add r4, r1, r4

Instructions reinserted

19

WIB Design IssuesWIB Design Issues

Ø WIB organization
Ø Allocating instructions to the WIB
Ø Reinserting instructions from WIB to issue queue
Ø Branch mispredicts & exceptions

Design choice:
Ø To handle recovery, WIB keeps instructions in program

order.
Ø WIB is organized around the active list (same size as the

active list).

20

Moving Instructions to WIBMoving Instructions to WIB

Ø Use a “pretend ready” bit alongside the conventional
ready bit

Ø Cache miss raises a “pretend ready” signal
Ø Utilize existing issue queue wakeup/select logic
Ø Propagate pretend ready bit to dependent instructions

that are
• Already in flight
• Not fetched yet

Register Status Table

p0

p1

p2

… …

busy

ready

pretend ready

21

Moving Instructions to WIBMoving Instructions to WIB

Priority
Instruction 1
Instruction 2

Instruction N

...

To Issue Queue

Bit-Vectors WIB

HeadHead

TailTail

1

0

0

0

1

1

0

Load Miss

Instruction

Ø Bit-vectors help ease WIB management
Ø Set instruction’s corresponding bit to 1 to indicate it’s

moved to the WIB

22

Reinserting Instructions to IQReinserting Instructions to IQ

Priority
Instruction 1
Instruction 2

Instruction N

......

To Issue Queue

Bit-Vectors WIB

HeadHead

TailTail

1

0

0

1

1

1

0

Wired-OR

Resolved Load Misses

Ø All dependent instructions are eligible to be reinserted
Ø Priority circuit selects instructions based on selection policy

Clear

23

Bank 0

A MultiA Multi--banked WIB Organizationbanked WIB Organization

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7

Active List

I0 I1 I2 I3

I0I1I2I3

I4 I5 I6 I7

I4I5I6I7

24

A Single Bank ViewA Single Bank View

Priority
Instruction 1
Instruction 2

Instruction N

......

To Issue Queue

Bit-Vectors WIB Bank

HeadHead

TailTail

1

0

0

0

1

1

0

Wired-OR

Resolved Load Miss

Select a single instruction
out of the WIB

25

OutlineOutline

Ø Motivation
Ø The Waiting Instruction Buffer (WIB)
Ø WIB design issues
Ø Results

• Average speedups:
–SPEC2000 Integer 20%
–SPEC2000 FP 84%
–Olden 50%

Ø Conclusion

26

MethodologyMethodology

Ø Heavily modified SimpleScalar v3.0b
Ø 8-way fetch, decode, and commit
Ø 12-way issue (8 integer, 4 FP)
Ø 32 KB 4-way 2-cycle L1, 256 KB 4-way 10-cycle L2 data

caches, 250-cycle memory latency
• Shorter memory latency and larger L2 data cache do

not affect WIB performance qualitatively
Ø Benchmarks:

• SPEC2000 Integer and FP: skip first 400M, execute
next 100M instructions

• Olden: execute first 400M or until completion

27

WIB PerformanceWIB Performance

Ø WIB: 2K-entry active list, 32-entry IQ, 16-banked, 1K bit-vectors
Ø Average: SPEC INT 20%, SPEC FP 84%, Olden 50%
Ø Maximum: SPEC INT 76%, SPEC FP 290%, Olden 161%

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Integer FP Olden

A
ve

ra
ge

 S
pe

ed
up

32-IQ/128

32-IQ/2K

2K-IQ/2K

WIB

28

NonNon--Banked Banked MulticycleMulticycle WIBWIB

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

Integer FP Olden

A
ve

ra
ge

 S
pe

ed
up

32-IQ/128
Banked
4-Cycle
6-Cycle

Ø 4-cycle and 6-cycle: non-banked WIB with instruction extraction in full
program order

Ø WIB latency only affects performance slightly

29

Limited BitLimited Bit--VectorsVectors

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

Integer FP Olden

A
ve

ra
ge

 S
pe

ed
up 32-IQ/128

16

32

64

1024

Ø With 64 bit-vectors, SPEC INT 19%, SPEC FP 45%, Olden 50%
Ø With 16 bit-vectors, SPEC INT 16%, SPEC FP 26%, Olden 38%
Ø FP benchmarks are affected most because they have more memory

level parallelism

30

ConclusionConclusion

Ø Motivation:
• Larger instruction window exposes higher ILP
• Conventional designs do not scale

Ø Observation:
• In conventional designs, instructions dependent on long

latency operations waste issue queue slots

Ø Waiting instruction buffer:
• Enlarges effective window size without affecting clock cycle

time
• Implements a simplified form of wakeup-select
• Insensitive to access latency

