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A Dynamically Scheduled Processor A Dynamically Scheduled Processor 
(Alpha 21264)(Alpha 21264)
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Ø Active list: keeps in-flight instructions in program order (the retire unit in the 
21264)

Ø Issue queues: keep waiting instructions and issues ready instructions
Ø Instruction window = Active list + Issue queues
Ø We want thousands of instructions in-flight to exploit ILP
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Instruction Window Size EffectsInstruction Window Size Effects
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Ø 32, 64, and 128 have 128-entry active list, all others have active list 
size same as instruction window (issue queue) size

Ø Larger window, higher IPC, most plateau beyond 2K
Ø 2K vs. 32 (base): Integer 35%, FP 140%, Olden 103%
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Towards a Large Instruction WindowTowards a Large Instruction Window

Ø Larger instruction window, more ILP exposed
Ø Larger instruction window, slower clock (Palacharla et al. 

ISCA’97, Agarwal et al. ISCA’00)
• Active list can be large because it’s not on critical path
• Issue queue doesn’t scale due to complex wakeup/select

Goal: Support large instruction window without affecting 
clock cycle time
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Problem of Conventional DesignProblem of Conventional Design
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The Big IdeaThe Big Idea

Ø Problem:
• Instructions dependent on a long latency operation 

(e.g., cache miss) waste issue queue entries!
• No new instructions are able to come into the window.

Ø Our Solution:
• Move instructions dependent on a long latency 

operation to a waiting instruction buffer (WIB)
• Reinsert all dependent instructions from WIB back to 

issue queue when the long latency operation finishes
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OutlineOutline

Ø Motivation
Ø The Waiting Instruction Buffer (WIB)

• Design and implementation

Ø Results
• Average speedups: 

–SPEC2000 Integer 20%
–SPEC2000 FP 84%
–Olden 50%

Ø Conclusion 
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The Waiting Instruction BufferThe Waiting Instruction Buffer

Ø Move instructions dependent on a long latency operation 
to a waiting instruction buffer (WIB)

Ø Reinsert all dependent instructions from WIB back to 
issue queue when the long latency operation finishes

Ø WIB has simple wakeup/select

Key:
Ø No full dependence checking in the WIB
Ø WIB only tracks which long latency operation instructions 

depend on
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ld r1, 1024(r0)ld r1, 1024(r0)
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sll r3, 0x4, r3
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WIB Design IssuesWIB Design Issues

Ø WIB organization
Ø Allocating instructions to the WIB
Ø Reinserting instructions from WIB to issue queue
Ø Branch mispredicts & exceptions

Design choice:
Ø To handle recovery, WIB keeps instructions in program 

order. 
Ø WIB is organized around the active list (same size as the 

active list).
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Moving Instructions to WIBMoving Instructions to WIB

Ø Use a “pretend ready” bit alongside the conventional 
ready bit

Ø Cache miss raises a “pretend ready” signal
Ø Utilize existing issue queue wakeup/select logic
Ø Propagate pretend ready bit to dependent instructions 

that are
• Already in flight
• Not fetched yet

Register Status Table
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p2

… …
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ready

pretend ready
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Moving Instructions to WIBMoving Instructions to WIB
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Ø Bit-vectors help ease WIB management
Ø Set instruction’s corresponding bit to 1 to indicate it’s 

moved to the WIB
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Reinserting Instructions to IQReinserting Instructions to IQ
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Ø All dependent instructions are eligible to be reinserted
Ø Priority circuit selects instructions based on selection policy

Clear
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Bank 0
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A Single Bank ViewA Single Bank View
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OutlineOutline

Ø Motivation
Ø The Waiting Instruction Buffer (WIB)
Ø WIB design issues
Ø Results

• Average speedups: 
–SPEC2000 Integer 20%
–SPEC2000 FP 84%
–Olden 50%

Ø Conclusion 
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MethodologyMethodology

Ø Heavily modified SimpleScalar v3.0b
Ø 8-way fetch, decode, and commit
Ø 12-way issue (8 integer, 4 FP)
Ø 32 KB 4-way 2-cycle L1, 256 KB 4-way 10-cycle L2 data 

caches, 250-cycle memory latency
• Shorter memory latency and larger L2 data cache do 

not affect WIB performance qualitatively
Ø Benchmarks:

• SPEC2000 Integer and FP: skip first 400M, execute 
next 100M instructions

• Olden: execute first 400M or until completion
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WIB PerformanceWIB Performance

Ø WIB: 2K-entry active list, 32-entry IQ, 16-banked, 1K bit-vectors
Ø Average: SPEC INT 20%, SPEC FP 84%, Olden 50%
Ø Maximum: SPEC INT 76%, SPEC FP 290%, Olden 161%
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NonNon--Banked Banked MulticycleMulticycle WIBWIB
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Ø 4-cycle and 6-cycle: non-banked WIB with instruction extraction in full 
program order

Ø WIB latency only affects performance slightly
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Limited BitLimited Bit--VectorsVectors
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Ø With 64 bit-vectors, SPEC INT 19%, SPEC FP 45%, Olden 50%
Ø With 16 bit-vectors, SPEC INT 16%, SPEC FP 26%, Olden 38%
Ø FP benchmarks are affected most because they have more memory 

level parallelism



30

ConclusionConclusion

Ø Motivation:
• Larger instruction window exposes higher ILP
• Conventional designs do not scale

Ø Observation:
• In conventional designs, instructions dependent on long 

latency operations waste issue queue slots

Ø Waiting instruction buffer:
• Enlarges effective window size without affecting clock cycle 

time
• Implements a simplified form of wakeup-select
• Insensitive to access latency


