
Quantifying Instruction Criticality for Quantifying Instruction Criticality for
Shared Memory MultiprocessorsShared Memory Multiprocessors

Tong Li and Alvin R. Lebeck

Department of Computer Science
Duke University

{tongli,alvy}@cs.duke.edu

Daniel J. Sorin

Department of Electrical and
Computer Engineering

Duke University
sorin@ee.duke.edu

2

OverviewOverview

Ø All instructions are NOT created equal
• With respect to impact on performance à criticality

Ø Example (a 2-processor shared memory system):
processor 1
r3 = r1 + r2
store r3, 0x1000
r3 = r3 * r5
r4++

Ø Contributions of this work
• Create model for determining criticality in MP systems
• Devise algorithm for computing criticality
• Evaluate criticality of real MP workloads

Ø But why do we care about criticality?

processor 2
g1 = g2 / g3
g4++
load g5, 0x1000
g2 = g4 + g5

data dependence

3

Multiprocessor Control PoliciesMultiprocessor Control Policies

If the system knew instruction criticality dynamically,
how could this be helpful?

Ø Power efficiency
• Less critical instructions can run more slowly

Ø Resource utilization
• Critical-instruction-first resource allocations

Ø Misspeculation reduction
• Turn off speculation for less critical instructions

4

OutlineOutline

Ø Motivation
Ø A directed acyclic graph (DAG) model for execution

• Critical path and slack
• Mapping DAGs to multiprocessor systems
• Computing slack

Ø Graph Reduction
Ø Evaluation
Ø Related work
Ø Conclusions and future work

5

A DAG Model for Program ExecutionA DAG Model for Program Execution

Ø Node: dynamic event during
execution (e.g., fetching an
instruction, executing a task)

Ø Edge: dependence between
source and sink nodes (e.g.,
data dependence)
• Weighted by the time to resolve

the dependence
Ø Critical path: longest weighted

path in the DAG
(CP length = runtime)

We study spectrum of criticality, not
just on or not on the critical path

6

CriticalityCriticality

Ø Criticality: importance level of
event to overall performance

Fields et al. (ISCA ’02):

Ø Global slack: how long the start
time of an event (node) can be
delayed without affecting
program runtime (criticality!)

Ø Edge arrival time: time at which
the represented dependence is
resolved during execution

Ø Last arriving edge: edge that
arrives last at the sink node

2

3

4

2

3

6 5

84 arrival time
(not weight)

An edge on a critical path
must be a last-arriving
edge; A non-last-arriving
edge must not be on a
critical path

Previous work applies criticality to uniprocessors.
We extend it to multiprocessors

7

Multiprocessor CriticalityMultiprocessor Criticality
Ø Extension of uniprocessor DAG

model (Fields et al. ISCA’01,
ISCA’02)

Ø In-order processors
• Each node represents an instruction

Ø Shared memory system
• Processors communicate only via

loads and stores to shared memory

Ø Two types of dependence
(edges)
• Program order
• Read-after-write (RAW)

Ø Global slack quantifies instruction
criticality, but how to compute it?

Processor 1 Processor 2 Processor 3

1

2

7

3

4

5

3
2

4

load store

load

load

6

store

program
order edge

RAW edge

store

load
5

RAW
edge

8

Local Slack: A Tool for Global SlackLocal Slack: A Tool for Global Slack

Ø The local slack of an edge e = (u, v), denoted by L(e), is
the time that the latency of e can be increased without
delaying its sink node v. (Fields et al. ISCA 2002)

Ø Properties
• If an edge is not last-arriving, then it can be delayed
• If an edge is last-arriving, then it cannot be delayed

')',max()'(
)',max()(

ttteL
ttteL

−=
−=

u

v

w

ee’

arrival time t = 5arrival time t’= 8

Based on local slack, we can compute global slack

Edge e can be delayed for 3 time units

9

Computing Global SlackComputing Global Slack

Ø The global slack of a node u, denoted by G(u), is the
maximum time u can be delayed without extending the
critical path of the DAG (Fields et al. ISCA 2002)

u

v2

))()((min)(ii
i

vGeLuG +=

… …v1 vn

e1 e2 en

Ø An instruction’s global
slack quantifies its criticality

Ø A node’s global slack
depends on local slack of
its outgoing edges and
global slack of its children

Ø To compute global slack for
all nodes, we need to
process the entire DAG

10

OutlineOutline

Ø Motivation
Ø A directed acyclic graph (DAG) model for execution
Ø Graph Reduction
Ø Evaluation
Ø Related work
Ø Conclusions and future work

11

Graph ReductionGraph Reduction

Ø We compute global slack offline, but processing DAGs
requires large amounts of storage and time
• Programs have billions of instructions

Ø We propose graph reduction to reduce DAGs
Ø Graph reduction dynamically removes DAG nodes and

edges that don’t change the critical path and global slack
of all nodes

Ø Three theorems describe when a reduction can be
performed dynamically during a program’s execution
• Details of theorems and proofs are in the paper

12

Graph Reduction Graph Reduction ––Theorem 1Theorem 1

If
Ø v0, … , vk are on the same processor
Ø v1, … , vk-1 are neither loads nor stores

Then
Ø The DAG can be reduced by removing v1,

… , vk-1 and retaining arrival time t

Why ?
Ø G(v1) = G(v2) = … = G(vk-1) = G(vk)
Ø If v1, … , vk-1 are on the critical path, then v0

and vk must be on the critical path of the
reduced DAG

…

v0

v1

v2

vk-1

vk

v0

vk

arrival
time = t

arrival
time = t

reduction

Program situation: Many instructions are neither loads
nor stores. We can remove all of them!

13

Graph Reduction Graph Reduction ––Theorem 2Theorem 2

If
Ø Arrival time of e is less than arrival

time of p
Ø No node between w and v is the sink

of a RAW edge that is last-arriving at
the node

Then
Ø RAW edge e can be removed
Why ?
Ø e must not be on the critical path
Ø e does not contribute to computing

G(u) and G(x)

w

v

u

RAW
edge e

RAW
edge e’

program
order edge p

x

Program situation: A sequence of loads on the same processor
read the same value written by a store. We could remove all
these RAW edges except the first one!

store

load

load

14

Graph Reduction Graph Reduction ––Theorem 3Theorem 3

If
Ø Arrival time of e is less than arrival time

of p
Ø No node between u and v is the sink of

a RAW edge that is last-arriving at the
node

Then
Ø RAW edge e can be removed
Why ?
Ø e must not be on the critical path
Ø e does not contribute to computing G(u)

and G(x)

u

v

x

RAW
edge e

Program
order edge p

Program situation: A load reads a value written by a store
on the same processor. We could remove this RAW edge!

store

load

15

OutlineOutline

Ø Motivation
Ø A directed acyclic graph (DAG) model for execution
Ø Graph Reduction
Ø Evaluation

• Methodology
• Results

Ø Related work
Ø Conclusions and future work

16

ExperimentsExperiments

Ø Do instructions really have global slack? How much?

Ø How critical is an entire processor in a program’s execution?

Ø How do different cache coherence protocols affect global
slack of instructions?

Ø How effective is graph reduction?

17

Methodology Methodology ––SimulatorSimulator

Ø Simics
• Full-system multiprocessor simulator
• Functional simulator, can boot unmodified Solaris 8
• A detailed memory hierarchy timing module

Ø Processor model
• In-order processor core
• Blocking cache requests

Ø Memory model
• MOSI broadcast snooping cache coherence protocol
• Sequential consistency

18

Methodology Methodology ––WorkloadsWorkloads
Ø Commercial workloads (Wisconsin suite)

• OLTP: online transaction processing
• Java server: SPECjbb2000 server-side java benchmark
• Static web server: web server with static content
• Dynamic web server: web server with dynamic content

Ø Scientific workloads (Stanford SPLASH-2)
• Barnes-Hut: simulates the interactions of a system of bodies

using the Barnes-Hut hierarchical N-body method
• Ocean: simulates ocean movements using Gauss-Seidel

multi-grid equation solver

19

Methodology Methodology ––Data Acquisition and AnalysisData Acquisition and Analysis

Ø Warm up simulated system for each workload
Ø Log dependences (edges) into files during execution
Ø Dynamically apply graph reduction during execution
Ø Construct DAG from log files
Ø Offline compute global slack for each instruction

20

How Much Global Slack Exists?How Much Global Slack Exists?

Ø x-axis: global slack plus one in log scale
Ø y-axis: fraction of instructions that have global slack x
Ø Most instructions have global slack < 100 ns
Ø Spikes between 100 and 200 ns correspond to inter-

processor communication latency
Ø Other workloads have similar results

OLTP (2 processors)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10 100 1000 10000

GlobalSlack + 1 (ns)

P
D

F
:

F
ra

ct
io

n
 o

f
in

st
ru

ct
io

n
s

w
ith

 g
lo

b
a

l s
la

ck
 =

 x

OLTP (8 processors)

0

0.02

0.04

0.06

0.08

0.1

0.12

1 10 100 1000 10000
GlobalSlack + 1 (ns)

P
D

F
: F

ra
ct

io
n

 o
f i

n
st

ru
ct

io
n

s
w

ith
 g

lo
b

a
l s

la
ck

 =
 x

21

Insight into Processor CriticalityInsight into Processor Criticality

Ø x-axis: each processor in an 8-processor system
Ø y-axis: fraction of critical path’s time spent on processor x
Ø Critical path time breakdowns closely correspond with

processor L2 cache miss rates
Ø Other workloads have critical path evenly distributed

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7

Processor ID

Fr
ac

tio
n

of
 C

P
 ti

m
e

ocean

dynamic web server

22

Broadcast vs. Directory ProtocolsBroadcast vs. Directory Protocols

Ø x-axis: global slack plus one in log scale
Ø y-axis: fraction of instructions that have global slack = x
Ø More global slack in directory system
Ø Directory protocol has higher L2 miss latency because of indirections
Ø Other workloads have similar results

Static Web Server

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

GlobalSlack + 1 (ns)

C
D

F:
 F

ra
ct

io
n

of
 in

st
ru

ct
io

ns

w
it

h
 g

lo
b

al
 s

la
ck

 <
=

x

Broadcast

Directory

Java Server

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

GlobalSlack + 1 (ns)

C
D

F:
 F

ra
ct

io
n

of
 in

st
ru

ct
io

ns
w

it
h

 g
lo

b
al

 s
la

ck
 <

=
x

Broadcast

Directory

23

Effectiveness of Graph ReductionEffectiveness of Graph Reduction

Ø Reduction ratios range from 66 to 1968
Ø Average node reduction ratio 485, edge ratio 352
Ø Maximum node reduction ratio 1968, edge ratio 1484

Node reduction ratios Edge reduction ratios

0
100
200
300
400
500
600
700
800
900

1000
1100
1200

static
web

server

barnes-
hut

java
server

ocean oltp dynamic
web

server

N
o
d
e
 r

e
d
u
ct

io
n
 r

a
tio

2 processors

4 processors

8 processors

1968 1626

0

100

200

300

400

500

600

700

800

static
web

server

barnes-
hut

java
server

ocean oltp dynamic
web

server
E

d
g
e
 r

e
d
u
ct

io
n
 r

a
tio

2 processors

4 processors

8 processors

1484 1195

24

ExperimentsExperiments

Ø Do instructions really have global slack? How much?
• Most have global slack < 100 ns, some spikes between 100

and 200 ns

Ø How critical is an entire processor in a program’s
execution?
• A processor’s time on critical path closely corresponds with

its L2 cache miss rates

Ø How do different cache coherence protocols affect global
slack of instructions?
• Directory protocol has more global slack

Ø How effective is graph reduction?
• Reduction ratios range from 66 to 1968

25

Related WorkRelated Work

Ø Uniprocessor DAG model and critical path and slack
analysis (Fields 2001, 2002)

Ø Critical path and slack analysis at the procedure level or
above for performance bottlenecks (Hollingsworth 1994,
1998, and Yang 1998)

Ø Multiprocessor scheduling
Ø DAG reduction (Beckmann 1994, Netzer 1993)

26

Conclusions and Future WorkConclusions and Future Work

Ø We can construct a DAG model for multiprocessor
slack

Ø We can determine criticality by computing global
slack in the DAG model

Ø Experiments show global slack exists and graph
reduction effectively reduces DAG size

Ø Future research will study online algorithms for
predicting global slack and design criticality-based
processor control policies

