Quantifying Instruction Criticality for
Shared Memory Multiprocessors

Tong Li and Alvin R. Lebeck Daniel J. Sorin
Department of Computer Science Department of Electrical and
Duke University Computer Engineering
{tongli,alvy}@cs.duke.edu Duke University

sorin@ee.duke.edu

Overview

» All instructions are NOT created equal
* With respect to impact on performance - criticality

» Example (a 2-processor shared memory system):

processor 1 processor 2
3=rl+r2 dep datq gl=92/9g3
store r3, 0x1000 “Ndence g4++
13=r3%r5 T e g5, 0x1000

r4++ g2=904+05

» Contributions of this work
« Create model for determining criticality in MP systems
« Devise algorithm for computing criticality
« Evaluate criticality of real MP workloads

» But why do we care about criticality?

o ‘ Architecture

Multiprocessor Control Policies

If the system knew instruction criticality dynamically,
how could this be helpful?

> Power efficiency
« Less critical instructions can run more slowly

> Resource utilization
e Critical-instruction-first resource allocations

» Misspeculation reduction
« Turn off speculation for less critical instructions

& Architecture

Outline

> Motivation

> A directed acyclic graph (DAG) model for execution
 Critical path and slack
* Mapping DAGs to multiprocessor systems
e Computing slack

Graph Reduction

Evaluation

Related work

Conclusions and future work

vV V V V

rchitecture

A DAG Model for Program Execution

» Node: dynamic event during
execution (e.g., fetching an
Instruction, executing a task)

» Edge: dependence between
source and sink nodes (e.g.,
data dependence)

« Weighted by the time to resolve
the dependence

» Critical path: longest weighted

path in the DAG
(CP length = runtime)

We study spectrum of criticality, not
just on or not on the critical path

Architecture

Criticality

> Criticality: importance level of
event to overall performance
Fields et al. (ISCA ’'02):

» Global slack: how long the start
time of an event (node) can be
delayed without affecting 3
program runtime (criticality!)

» Edge arrival time: time at which
the represented dependence is
resolved during execution

» Last arriving edge: edge that
arrives last at the sink node

Previous work applies criticality to uniprocessors.
We extend it to multiprocessors

ystems & Architecture

8 arrival time
(not weight)

An edge on a critical path
must be a last-arriving
edge; A non-last-arriving
edge must not be on a

critical path
6

Multiprocessor Ciriticality

Extension of uniprocessor DAG
model (Fields et al. ISCA’01,
ISCA'02)

In-order processors
» Each node represents an instruction

Shared memory system
* Processors communicate only via
loads and stores to shared memory
Two types of dependence
(edges)
* Program order
* Read-after-write (RAW)

Global slack quantifies instruction
criticality, but how to compute it?

Processor 1 Processor 2 Processor 3

program
order edge

s & Architecture

Local Slack: A Tool for Global Slack

» The local slack of an edge e = (u, v), denoted by L(e), Iis
the time that the latency of e can be increased without
delaying its sink node v. (Fields et al. ISCA 2002)

> Properties

 If an edge is not last-arriving, then it can be delayed
 If an edge is last-arriving, then it cannot be delayed

Edge e can be delayed for 3 time units
arrival time t= 5 L(e) — maX(t,t') -1

L(€') = max(t,t')- t'
Based on local slack, we can compute global slack

arrival time t' =8

ystenis & Architecture

Computing Global Slack

The global slack of a node u, denoted by G(u), is the
maximum time u can be delayed without extending the
critical path of the DAG (Fields et al. ISCA 2002)

An instruction’s global
slack quantifies its criticality

A node’s global slack

depends on local slack of / ez\
Its outgoing edges and

global slack of its children @ @ YVa Ya @

To compute global slack for

all nodes, we need to G(u) =min(L(e) +G(v))
process the entire DAG |

>
>
>
>
>
>

Qutline

Motivation

A directed acyclic graph (DAG) model for execution
Graph Reduction

Evaluation

Related work

Conclusions and future work

steins & Architecture

10

Graph Reduction

» We compute global slack offline, but processing DAGs
requires large amounts of storage and time

- Programs have billions of instructions
> We propose graph reduction to reduce DAGs

» Graph reduction dynamically removes DAG nodes and
edges that don’'t change the critical path and global slack
of all nodes

> Three theorems describe when a reduction can be
performed dynamically during a program’s execution

- Detalls of theorems and proofs are in the paper

11
D U/KE Architecture

Graph Reduction — Theorem 1

Program situation: Many instructions are neither loads
nor stores. We can remove all of them!

>V, ..., V, are on the same processor @
>V, ..., V4 are neither loads nor stores

Then (w)
reduction @

» The DAG can be reduced by removing v;, al
..., Vi, and retaining arrival time t N bt

Why ?
> G(v) =G(v,) = ... =G(v_,) =G(v)

> Ifv, ..., v, are on the critical path, then v,
and v, must be on the critical path of the
reduced DAG

arrival
time =t

Architecture

Graph Reduction — Theorem 2

Program situation: A sequence of loads on the same processor
read the same value written by a store. We could remove all
these RAW edges except the first one!

I RAW

> Arrival time of eis less than arrival store
time of p

> No node between w and v is the sink
of a RAW edge that is last-arriving at
the node

Then

> RAW edge ecan be removed

Why ?

> e must not be on the critical path

> e does not contribute to computing G)Order edge p
G(u) and G(X) load

load
. program

13

Graph Reduction — Theorem 3

Program situation: A load reads a value written by a store
on the same processor. We could remove this RAW edge!

If

> Arrival time of eis less than arrival time
of p

> No node between u and v is the sink of
a RAW edge that is last-arriving at the
node

RAW i
Then edge e ’
> RAW edge e can be removed @
Why ? | Program

> e must not be on the critical path

» e does not contribute to computing G(u)
and G(X)

order edge p

14

VvV V VYV V

Outline

Motivation
A directed acyclic graph (DAG) model for execution
Graph Reduction

Evaluation
- Methodology
- Results
Related work

Conclusions and future work

rchitecture

15

Experiments

» Do instructions really have global slack? How much?
» How critical Is an entire processor in a program’s execution?

» How do different cache coherence protocols affect global
slack of instructions?

» How effective is graph reduction?

16

rchitecture

Methodology — Simulator

> Simics
* Full-system multiprocessor simulator
* Functional simulator, can boot unmodified Solaris 8
* A detailed memory hierarchy timing module

» Processor model
 In-order processor core
« Blocking cache requests
> Memory model
 MOSI broadcast snooping cache coherence protocol
« Sequential consistency

ystems & Architecture

17

Methodology — Workloads

» Commercial workloads (Wisconsin suite)

« OLTP: online transaction processing

« Java server: SPECjbb2000 server-side java benchmark

* Static web server: web server with static content

« Dynamic web server: web server with dynamic content
» Scientific workloads (Stanford SPLASH-2)

e Barnes-Hut: simulates the interactions of a system of bodies
using the Barnes-Hut hierarchical N-body method

e Ocean: simulates ocean movements using Gauss-Seidel
multi-grid equation solver

18

o ‘ Architecture

Methodology — Data Acquisition and Analysis

» Warm up simulated system for each workload

> Log dependences (edges) into files during execution
» Dynamically apply graph reduction during execution
» Construct DAG from log files

» Offline compute global slack for each instruction

19

v Architecture

How Much Global Slack Exists?

OLTP (2 processors) OLTP (8 processors)

5 08 012
s 5
2% o4 \ 2% 008
50 50 \
58 03 \ 5E 006 \
g 202 \ §§ 0.04 \
|- — =
- S
i %01 > 002
& \ . L/\J\

0 T w.. 1 1 0 T T !

1 10 100 1000 10000 1 10 100 1000 10000
GlobalSlack + 1 (ns) GlobalSlack + 1 (ns)

> X-axis: global slack plus one in log scale
> y-axis: fraction of instructions that have global slack x
» Most instructions have global slack < 100 ns

> Spikes between 100 and 200 ns correspond to inter-
processor communication latency

> Other workloads have similar results

20
D U/KE Architectur

Insight into Processor Criticality

0.3

0.25 - ocean
dynamic web server

0.2 A
0.15 A

0.1 A
0.05

0 T T T T T T T
0 1 2 3 4 5 6 7

Processor ID

Fraction of CP time

> X-axis: each processor in an 8-processor system
> y-axis: fraction of critical path’s time spent on processor x

» Critical path time breakdowns closely correspond with
processor L2 cache miss rates

» Other workloads have critical path evenly distributed

21

Architecture

Broadcast vs. Directory Protocols

.
Static Web Server Java Server
1.2 1.2
%) 1 " 1
c c
Eh ﬁ' g%
3V o8 SV oos
=0 -
S 2 06 52 08
o Q o Q
= O = O
go // g o //
L < 04 IS 04
Tz oS
5 // 5 ,/fj/
0.2 0.2
__._,_,..f—r/ ,j ——Broadcast ,=,—_—=-.¢-'—-$""r —— Broadcast
1 ——Directory —— Directory
0 T T T O T
1 10 100 1000 10000 1 10 100 1000 10000
GlobalSlack + 1 (ns) GlobalSlack + 1 (ns)

» X-axis: global slack plus one in log scale
> y-axis: fraction of instructions that have global slack = x
>

More global slack in directory system
» Directory protocol has higher L2 miss latency because of indirections

> Other workloads have similar results

18 & Architecture

Effectiveness of Graph Reduction

Node reduction ratios Edge reduction ratios
1968 1626 1484 1195
1200 ——
1100 @ 2 Processors] 800 @ 2 processors
1000 700
2 900 @ 4 processors 2 M 4 processors
E 800 0O 8 processors S 600 0O 8 processors
S 700 S 500
S 600 =
S w0 3 400
O 400 o 300
© (@]
S 300 W o 200 |
i I3 =15 = e I3 i= lal &
0 | h_l T T T T T 0 |_-—| T T T T T
static barnes- java ocean oltp dynamic static barnes- java ocean oltp dynamic
web hut server web web hut server web
server server server server

» Reduction ratios range from 66 to 1968
» Average node reduction ratio 485, edge ratio 352
» Maximum node reduction ratio 1968, edge ratio 1484

23

rchitecture

Experiments

» Do instructions really have global slack? How much?

¢ Most have global slack < 100 ns, some spikes between 100
and 200 ns

» How critical is an entire processor in a program’s
execution?

* A processor’s time on critical path closely corresponds with
its L2 cache miss rates

» How do different cache coherence protocols affect global
slack of instructions?

* Directory protocol has more global slack

» How effective is graph reduction?
* Reduction ratios range from 66 to 1968

3 24
D U/KE Architecture -

Related Work

Uniprocessor DAG model and critical path and slack
analysis (Fields 2001, 2002)

Critical path and slack analysis at the procedure level or
above for performance bottlenecks (Hollingsworth 1994,
1998, and Yang 1998)

Multiprocessor scheduling
DAG reduction (Beckmann 1994, Netzer 1993)

25

18 & Architecture

Conclusions and Future Work

» We can construct a DAG model for multiprocessor
slack

» We can determine criticality by computing global
slack in the DAG model

» EXxperiments show global slack exists and graph
reduction effectively reduces DAG size

» Future research will study online algorithms for
oredicting global slack and design criticality-based
orocessor control policies

26

