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OverviewOverview

Ø All instructions are NOT created equal
• With respect to impact on performance à criticality

Ø Example (a 2-processor shared memory system):
processor 1
r3 = r1 + r2
store r3, 0x1000
r3 = r3 * r5
r4++

Ø Contributions of this work
• Create model for determining criticality in MP systems
• Devise algorithm for computing criticality
• Evaluate criticality of real MP workloads

Ø But why do we care about criticality?

processor 2
g1 = g2 / g3
g4++
load g5, 0x1000
g2 = g4 + g5

data dependence
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Multiprocessor Control PoliciesMultiprocessor Control Policies

If the system knew instruction criticality dynamically, 
how could this be helpful?

Ø Power efficiency
• Less critical instructions can run more slowly

Ø Resource utilization
• Critical-instruction-first resource allocations

Ø Misspeculation reduction
• Turn off speculation for less critical instructions
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OutlineOutline

Ø Motivation
Ø A directed acyclic graph (DAG) model for execution

• Critical path and slack
• Mapping DAGs to multiprocessor systems
• Computing slack

Ø Graph Reduction
Ø Evaluation
Ø Related work
Ø Conclusions and future work
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A DAG Model for Program ExecutionA DAG Model for Program Execution

Ø Node: dynamic event during 
execution (e.g., fetching an 
instruction, executing a task)

Ø Edge: dependence between 
source and sink nodes (e.g., 
data dependence)
• Weighted by the time to resolve 

the dependence
Ø Critical path: longest weighted 

path in the DAG 
(CP length = runtime)

We study spectrum of criticality, not 
just on or not on the critical path
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CriticalityCriticality

Ø Criticality: importance level of 
event to overall performance

Fields et al. (ISCA ’02):

Ø Global slack: how long the start 
time of an event (node) can be 
delayed without affecting 
program runtime (criticality!)

Ø Edge arrival time: time at which
the represented dependence is 
resolved during execution

Ø Last arriving edge: edge that 
arrives last at the sink node

2

3

4

2

3

6 5

84 arrival time 
(not weight)

An edge on a critical path 
must be a last-arriving 
edge; A non-last-arriving 
edge must not be on a 
critical path

Previous work applies criticality to uniprocessors. 
We extend it to multiprocessors
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Multiprocessor CriticalityMultiprocessor Criticality
Ø Extension of uniprocessor DAG 

model (Fields et al. ISCA’01, 
ISCA’02)

Ø In-order processors
• Each node represents an instruction

Ø Shared memory system
• Processors communicate only via 

loads and stores to shared memory

Ø Two types of dependence 
(edges)
• Program order
• Read-after-write (RAW)

Ø Global slack quantifies instruction 
criticality, but how to compute it?

Processor 1 Processor 2 Processor 3
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program 
order edge

RAW edge

store

load
5

RAW 
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Local Slack: A Tool for Global SlackLocal Slack: A Tool for Global Slack

Ø The local slack of an edge e = (u, v), denoted by L(e), is 
the time that the latency of e can be increased without 
delaying its sink node v. (Fields et al. ISCA 2002)

Ø Properties
• If an edge is not last-arriving, then it can be delayed
• If an edge is last-arriving, then it cannot be delayed
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Based on local slack, we can compute global slack

Edge e can be delayed for 3 time units
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Computing Global SlackComputing Global Slack

Ø The global slack of a node u, denoted by G(u), is the 
maximum time u can be delayed without extending the 
critical path of the DAG (Fields et al. ISCA 2002)
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Ø An instruction’s global 
slack quantifies its criticality

Ø A node’s global slack 
depends on local slack of 
its outgoing edges and 
global slack of its children

Ø To compute global slack for 
all nodes, we need to 
process the entire DAG
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OutlineOutline

Ø Motivation
Ø A directed acyclic graph (DAG) model for execution
Ø Graph Reduction
Ø Evaluation
Ø Related work
Ø Conclusions and future work
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Graph ReductionGraph Reduction

Ø We compute global slack offline, but processing DAGs
requires large amounts of storage and time
• Programs have billions of instructions

Ø We propose graph reduction to reduce DAGs
Ø Graph reduction dynamically removes DAG nodes and 

edges that don’t change the critical path and global slack 
of all nodes

Ø Three theorems describe when a reduction can be 
performed dynamically during a program’s execution
• Details of theorems and proofs are in the paper
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Graph Reduction Graph Reduction ––Theorem 1Theorem 1

If
Ø v0, … , vk are on the same processor
Ø v1, … , vk-1 are neither loads nor stores

Then
Ø The DAG can be reduced by removing v1, 

… , vk-1 and retaining arrival time t

Why ?
Ø G(v1) = G(v2) = …  = G(vk-1) = G(vk)
Ø If v1, … , vk-1 are on the critical path, then v0

and vk must be on the critical path of the 
reduced DAG

…

v0

v1

v2

vk-1

vk

v0

vk

arrival 
time = t

arrival 
time = t

reduction

Program situation: Many instructions are neither loads 
nor stores. We can remove all of them!
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Graph Reduction Graph Reduction ––Theorem 2Theorem 2

If
Ø Arrival time of e is less than arrival 

time of p
Ø No node between w and v is the sink 

of a RAW edge that is last-arriving at 
the node

Then
Ø RAW edge e can be removed
Why ?
Ø e must not be on the critical path
Ø e does not contribute to computing 

G(u) and G(x)

w

v

u

RAW 
edge e

RAW 
edge e’

program 
order edge p

x

Program situation: A sequence of loads on the same processor 
read the same value written by a store. We could remove all 
these RAW edges except the first one!

store

load

load
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Graph Reduction Graph Reduction ––Theorem 3Theorem 3

If
Ø Arrival time of e is less than arrival time 

of p
Ø No node between u and v is the sink of 

a RAW edge that is last-arriving at the 
node

Then
Ø RAW edge e can be removed
Why ?
Ø e must not be on the critical path
Ø e does not contribute to computing G(u) 

and G(x)

u

v

x

RAW 
edge e

Program 
order edge p

Program situation: A load reads a value written by a store 
on the same processor. We could remove this RAW edge!

store

load
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OutlineOutline

Ø Motivation
Ø A directed acyclic graph (DAG) model for execution
Ø Graph Reduction
Ø Evaluation

• Methodology
• Results

Ø Related work
Ø Conclusions and future work



16

ExperimentsExperiments

Ø Do instructions really have global slack? How much?

Ø How critical is an entire processor in a program’s execution?

Ø How do different cache coherence protocols affect global 
slack of instructions?

Ø How effective is graph reduction?
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Methodology Methodology ––SimulatorSimulator

Ø Simics
• Full-system multiprocessor simulator
• Functional simulator, can boot unmodified Solaris 8
• A detailed memory hierarchy timing module

Ø Processor model
• In-order processor core 
• Blocking cache requests

Ø Memory model
• MOSI broadcast snooping cache coherence protocol
• Sequential consistency
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Methodology Methodology ––WorkloadsWorkloads
Ø Commercial workloads (Wisconsin suite)

• OLTP: online transaction processing
• Java server: SPECjbb2000 server-side java benchmark
• Static web server: web server with static content
• Dynamic web server: web server with dynamic content

Ø Scientific workloads (Stanford SPLASH-2)
• Barnes-Hut: simulates the interactions of a system of bodies 

using the Barnes-Hut hierarchical N-body method
• Ocean: simulates ocean movements using Gauss-Seidel 

multi-grid equation solver
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Methodology Methodology ––Data Acquisition and AnalysisData Acquisition and Analysis

Ø Warm up simulated system for each workload
Ø Log dependences (edges) into files during execution
Ø Dynamically apply graph reduction during execution
Ø Construct DAG from log files
Ø Offline compute global slack for each instruction
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How Much Global Slack Exists?How Much Global Slack Exists?

Ø x-axis: global slack plus one in log scale
Ø y-axis: fraction of instructions that have global slack x
Ø Most instructions have global slack < 100 ns
Ø Spikes between 100 and 200 ns correspond to inter-

processor communication latency
Ø Other workloads have similar results
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Insight into Processor CriticalityInsight into Processor Criticality

Ø x-axis: each processor in an 8-processor system
Ø y-axis: fraction of critical path’s time spent on processor x
Ø Critical path time breakdowns closely correspond with 

processor L2 cache miss rates
Ø Other workloads have critical path evenly distributed
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Broadcast vs. Directory ProtocolsBroadcast vs. Directory Protocols

Ø x-axis: global slack plus one in log scale
Ø y-axis: fraction of instructions that have global slack = x
Ø More global slack in directory system 
Ø Directory protocol has higher L2 miss latency because of indirections
Ø Other workloads have similar results
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Effectiveness of Graph ReductionEffectiveness of Graph Reduction

Ø Reduction ratios range from 66 to 1968
Ø Average node reduction ratio 485, edge ratio 352
Ø Maximum node reduction ratio 1968, edge ratio 1484

Node reduction ratios Edge reduction ratios
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ExperimentsExperiments

Ø Do instructions really have global slack? How much?
• Most have global slack < 100 ns, some spikes between 100 

and 200 ns

Ø How critical is an entire processor in a program’s 
execution?
• A processor’s time on critical path closely corresponds with 

its L2 cache miss rates

Ø How do different cache coherence protocols affect global 
slack of instructions?
• Directory protocol has more global slack

Ø How effective is graph reduction?
• Reduction ratios range from 66 to 1968



25

Related WorkRelated Work

Ø Uniprocessor DAG model and critical path and slack 
analysis (Fields 2001, 2002)

Ø Critical path and slack analysis at the procedure level or 
above for performance bottlenecks (Hollingsworth 1994, 
1998, and Yang 1998)

Ø Multiprocessor scheduling
Ø DAG reduction (Beckmann 1994, Netzer 1993)
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Conclusions and Future WorkConclusions and Future Work

Ø We can construct a DAG model for multiprocessor 
slack

Ø We can determine criticality by computing global 
slack in the DAG model

Ø Experiments show global slack exists and graph 
reduction effectively reduces DAG size

Ø Future research will study online algorithms for 
predicting global slack and design criticality-based 
processor control policies


