
Pulse: A Dynamic Deadlock Detection Pulse: A Dynamic Deadlock Detection
Mechanism Using Speculative ExecutionMechanism Using Speculative Execution

Tong Li1, Carla S. Ellis1, Alvin R. Lebeck1, and Daniel J. Sorin2

1Department of Computer Science
Duke University

{tongli,carla,alvy}@cs.duke.edu

2Dept. of Elec. and Comp. Engineering
Duke University

sorin@ee.duke.edu

2

MotivationMotivation
Ø Deadlock is potential problem for all multithreaded programs
Ø Existing detection techniques have limitations
Ø Goals

• Increase the types of deadlocks that can be detected
• Provide insights into cause of deadlock

3

Limitations of Existing TechniquesLimitations of Existing Techniques
Ø Dynamic deadlock detection

• Timeouts
–Inaccurate, no insight about cause of

deadlock
• Wait-for-graphs (WFGs)

–General resource graphs with single-unit
reusable resources

–Often applied to lock-like resources

Ø Static deadlock detection
• Model checking

–Accurate, but state space too large
• RacerX (Engler and Ashcraft SOSP 2003)

–Practical, but only lock-like resources

P1 R1

R2 P2

General resource graph

P1 P2

Wait-for-graph

Ø Both WFGs and RacerX consider only lock-like resources

4

Beyond LocksBeyond Locks

Ø Need to handle non-lock-like (consumable) resources
Ø Why is it challenging?

• Consumable resources have no owners
–Pipes, synchronization semaphores, etc.

• Any process could be a producer at some future time
–Any process could write to a pipe or “up” a semaphore

Process 1

P(sem) // block

Ø Knowing only the present state is not enough for
identifying all dependences!

Process 2

…

V(sem)

Process 3

…

V(sem)

5

The Big IdeaThe Big Idea

Ø We need to look into the future
• What would process X do if it were not blocked?
• Would it unblock process Y in the future?

Ø If we can answer these questions, then we know how
processes depend on each other

Ø Could use static tool, but state space explosion, variable
aliasing, etc.

Ø We use dynamic scheme to look into the future

6

Introducing PulseIntroducing Pulse

Ø Speculatively unblock each blocked process
Ø Discover dependences by running ahead
Ø Construct general resource graph with consumable

resources

Static

WFG

Pulse

False
positives

Venn diagram of
deadlocks
detectable by static
tools, WFG-based
dynamic tools, and
Pulse

Ø Pulse can detect deadlocks that the other tools cannot

7

OutlineOutline

Ø Motivation
Ø Overview of Pulse
Ø Design
Ø Implementation
Ø Evaluation
Ø Conclusion

8

Ø Features: Dynamic, speculative execution, general
resource graph

Overview of PulseOverview of Pulse

Nap

MonitorDetection

period
check

no long sleeping
process found

long sleeping
process found

detection
finished

–Long-sleeping processes are potentially deadlocked

Ø Pulse runs as a daemon process

Ø Three modes
• Nap: sleeps in kernel
• Monitor: looks for long-sleeping

processes/threads
• Detection

9

Detection ModeDetection Mode

Ø Identify events long-sleeping processes are waiting for
• E.g., semaphore up: V(sem)

Ø Fork each process to create a speculative process

Ø Unblock speculative process
• E.g., “up” the semaphore in its own address space

Ø Record events generated by speculative processes
• E.g., all semaphore up operations

Ø Construct general resource graph and check for cycle

10

Example: Smokers ProblemExample: Smokers Problem

Ø Three smokers, one agent
Ø Three ingredients: paper, tobacco, matches
Ø Each smoker has one ingredient, but needs two more
Ø Agent puts out two at a time
Ø One smoker gets them and signals agent to continue

Ø Semaphores for synchronization, not mutual exclusion

Smoker 1

while (1) {
P(tobacco)
P(paper) // block
V(order)

}

Smoker 2

while (1) {
P(paper) // block
P(matches)
V(order)

}

Smoker 3

while (1) {
P(matches)
P(tobacco) // block
V(order)

}

Agent

while (1) {
P(order) // block
V(one of tobacco, paper,

matches at random)
V(one of the three at

random but not above)
}

11

Ø Enter detection mode after all blocked for a long time
Ø Construct a process node for each long-sleeping process

agent

smoker2smoker1 smoker3

Smoker 1

while (1) {
P(tobacco)
P(paper) // block
V(order)

}

Smoker 2

while (1) {
P(paper) // block
P(matches)
V(order)

}

Smoker 3

while (1) {
P(matches)
P(tobacco) // block
V(order)

}

Agent

while (1) {
P(order) // block
V(one of tobacco, paper,

matches at random)
V(one of the three at

random but not above)
}

Constructing Process NodesConstructing Process Nodes

12

Ø Construct an event node for the event each process is
waiting for

smoker2

V(order)V(paper) V(tobacco)

smoker1 smoker3

Smoker 1

while (1) {
P(tobacco)
P(paper) // block
V(order)

}

Smoker 2

while (1) {
P(paper) // block
P(matches)
V(order)

}

Smoker 3

while (1) {
P(matches)
P(tobacco) // block
V(order)

}

Agent

while (1) {
P(order) // block
V(one of tobacco, paper,

matches at random)
V(one of the three at

random but not above)
}

agent

Constructing Event NodesConstructing Event Nodes

13

Ø Construct request edge from process node to event node

smoker2

V(order)V(paper) V(tobacco)

smoker1 smoker3

Smoker 1

while (1) {
P(tobacco)
P(paper) // block
V(order)

}

Smoker 2

while (1) {
P(paper) // block
P(matches)
V(order)

}

Smoker 3

while (1) {
P(matches)
P(tobacco) // block
V(order)

}

Agent

while (1) {
P(order) // block
V(one of tobacco, paper,

matches at random)
V(one of the three at

random but not above)
}

agent

Constructing Request EdgesConstructing Request Edges

waiting for V(paper)

14

smoker2

V(order)V(paper) V(tobacco)

smoker1 smoker3

Ø Speculatively execute processes ahead
Ø Smoker 1 produces V(order), agent produces V(paper)
Ø Construct producer edge from event to process node

Smoker 1

while (1) {
P(tobacco)
P(paper) // block
V(order)

}

Smoker 2

while (1) {
P(paper) // block
P(matches)
V(order)

}

Smoker 3

while (1) {
P(matches)
P(tobacco) // block
V(order)

}

Agent

while (1) {
P(order) // block
V(one of tobacco, paper,

matches at random)
V(one of the three at

random but not above)
}

agent

Constructing Producer EdgesConstructing Producer Edges

15

PID 19629
(agent)

PID 19631
(smoker2)

0x8049edc
>0

V(order)

0x8049eec
>0

V(paper)

0x8049eb8
>0

V(tobacco)

PID 19630
(smoker1)

PID 19632
(smoker3)

Final Resource GraphFinal Resource Graph

Ø A cycle indicates potential deadlock
Ø Processes: represented by PIDs
Ø Events: (resource, condition) → (semaphore address, > 0)

16

Design Issues Design Issues ––Constructing NodesConstructing Nodes

Ø Event nodes
• Need to know the events for

which a process is waiting
• Modify all blocking system

calls to record the events
• Modified calls record events in

a per-process structure

Ø Process nodes
• Those processes asleep for a long time

PID 19629

(agent)

PID 19631

(smoker2)

0x8049edc
>0

V(order)

0x8049eec
>0

V(paper)

0x8049eb8
>0

V(tobacco)

PID 19630

(smoker1)

PID 19632

(smoker3)

17

Design Issues Design Issues ––Constructing EdgesConstructing Edges

Ø Producer edges
• Need to know what events a

process can produce
• Modify all counterpart system

calls (calls that unblock the
blocking ones)

• Record events in an event
buffer until the speculative
process terminates (normal
exit, full buffer, timeout)

Ø Request edges
• Constructed together with event nodes

PID 19629

(agent)

PID 19631

(smoker2)

0x8049edc
>0

V(order)

0x8049eec
>0

V(paper)

0x8049eb8
>0

V(tobacco)

PID 19630

(smoker1)

PID 19632

(smoker3)

18

Safe SpeculationSafe Speculation

Ø Cannot change state of any other process
• No change to memory state of other processes
• No writes to file system (including I/O devices)
• No signals to other processes

Solution:
Ø Similar to Fraser and Chang USENIX’03
Ø Fork with copy-on-write enabled
Ø Modify unsafe system calls (e.g., write, kill)

• Speculative processes record the events they produce
• Then return immediately

19

Limitations of PulseLimitations of Pulse

Ø False positives
• Speculation may run unrealistic program paths
• May have wrong cycles if resources are not consumable
• For resources that are not single-unit reusable, a cycle is

only necessary but not sufficient

Ø False negatives
• Speculative processes miss relevant events

–Programmer forgot V(sem)
–Speculation not long enough
–Event buffer full
–Unrealistic program paths

• Self-breaking mechanisms with timeouts

20

OutlineOutline

Ø Motivation
Ø Overview of Pulse
Ø Design
Ø Implementation
Ø Evaluation
Ø Conclusion

21

ImplementationImplementation

Ø Linux kernel 2.6.8.1
Ø Modified three blocking system calls

• futex, write (to pipe), and poll

Ø Modified four counterpart system calls
• futex, read, and write/writev

Ø Our approach can be applied easily to modify other syscalls
Ø Forking an arbitrary process: fork(P)

• Existing fork copies the caller process
• Adding a process argument to existing fork doesn’t work
• We use existing fork with only slight modifications

22

Forking Blocked ProcessesForking Blocked Processes

CPU

Pulse
1 To fork process P, first switch P in using

our own context-switch function

P

CPU

2 P calls the usual fork routine to create
speculative process P’

P P’

CPU

3 P’fakes the awaited event, calls syscall_exit
with success, and resumes P’s program

Pulse

CPU

Finally, P switches the Pulse process back
in and then P goes back to sleep

4

23

EvaluationEvaluation

Ø All experiments on an 8-processor IBM x445 eServer
Ø Fork was the most involved part in coding

• But only one-time effort
• Code is small and efficient

–94 lines of C, 47 lines of inline assembly, 7 lines assembly

Ø Three deadlock benchmarks
• Smokers Problem (discussed earlier)
• Dining-philosophers Problem
• Apache 2.0.49

24

Dining Philosophers ProblemDining Philosophers Problem

Ø Deadlock if all philosophers take left forks at same time

Ø All existing tools target this type of deadlock

Philosopher i

while (1) {
think()
lock(fork[i]) // take left fork
lock(fork[(i+1) % 5] // take right fork
eat();
unlock(fork[i]); // put left fork
unlock(fork[(i+1) % 5] // put right fork

}

block

25

Dining Philosophers ProblemDining Philosophers Problem
Ø Hex numbers are virtual addresses of lock variables
Ø Squares: processes, circles: events, edges: dependences

PID 19271

philo0

PID 19274

philo3

0x804a098
(lock4)
= 0

0x804a038
(lock0)

= 0

0x804a050
(lock1)

= 0

PID 19275

philo4

PID 19272

philo1

PID 19273

philo2

0x804a068
(lock2)

= 0

0x804a080
(lock3)

= 0

26

Apache DeadlockApache Deadlock

Ø Apache 2.0.49 with prefork Multi-Processing Module (MPM)
Ø Two-process deadlock:

• A CGI script’s process blocks when writing to stderr pipe
• An httpd process blocks when reading from stdout pipe
• Each can be unblocked only by the other

Ø Not detectable by WFGs and RacerX
Ø Pulse successfully detects it

PID 31042

(CGI script)

0xee3b9380
stderr pipe

read

PID 31036

(httpd)

0xee3b9500
stdout pipe

write

Ø Hex numbers are addresses
of pipe inode structures

27

Performance OverheadPerformance Overhead

Ø Overhead of the modified system calls
• Average slowdown per call: futex 0.2%, write 0.9%, poll 1%

Ø Overhead of periodic checking
• Nap to monitor, and back to nap

(5-min check interval): ~0.3
seconds for 2000 processes

• Apache Bench (1-min interval):
throughput difference < 0.2% w/
and w/o Pulse

Nap

MonitorDetection

period
check

no long sleeping
process found

long sleeping
process found

detection
finished

Ø Overhead of deadlock detection

• Less than 3 seconds from detection to finish

28

ConclusionConclusion
Ø Deadlock is potential problem for all multithreaded programs

Ø Existing detection tools focus on lock-like resources

Ø Pulse: dynamic, speculation, general resource graph

Ø Can detect deadlocks with non-lock-like resources
• E.g., synchronization semaphores, pipes

Ø Linux implementation

Ø Evaluation
• Dining-philosophers, smokers, Apache
• Negligible performance overhead

