Pulse: A Dynamic Deadlock Detection
Mechanism Using Speculative Execution

Tong Lit, Carla S. Ellisi, Alvin R. Lebeck?!, and Daniel J. Sorin2

Department of Computer Science 2Dept. of Elec. and Comp. Engineering
Duke University Duke University
{tongli,carla,alvy}@cs.duke.edu sorin@ee.duke.edu

Motivation

» Deadlock is potential problem for all multithreaded programs
» EXxisting detection techniques have limitations

» Goals
* Increase the types of deadlocks that can be detected
* Provide insights into cause of deadlock

| = L
T g

IR O=y=

rchitecture

Limitations of Existing Techniques

» Dynamic deadlock detection

 Timeouts

— Inaccurate, no insight about cause of
deadlock

o Wait-for-graphs (WFGSs)

— General resource graphs with single-unit
reusable resources

— Often applied to lock-like resources
» Static deadlock detection ﬁ

* Model checking -:-

— Accurate, but state space too large

« RacerX (Engler and Ashcraft SOSP 2003) Wait-for-graph
— Practical, but only lock-like resources

> Both WFGs and RacerX consider only lock-like resources

General resource graph

o ‘ Architecture

Beyond Locks

> Need to handle non-lock-like (consumable) resources
» Why is it challenging?
« Consumable resources have no owners
— Pipes, synchronization semaphores, etc.

* Any process could be a producer at some future time
— Any process could write to a pipe or “up” a semaphore

Process 1 Process 2 Process 3
P(sem) // block
V(sem) V(sem)

> Knowing only the present state is not enough for
identifying all dependences!

ystems & Architecture

The Big ldea

> We need to look into the future
« What would process X do if it were not blocked?
 Would it unblock process Y in the future?

> If we can answer these questions, then we know how
processes depend on each other

» Could use static tool, but state space explosion, variable
aliasing, etc.

» We use dynamic scheme to look into the future

ystems & Architecture

Introducing Pulse

» Speculatively unblock each blocked process
» Discover dependences by running ahead
» Construct general resource graph with consumable

resources
Venn diagram of
deadlocks
detectable by static
False tools, WFG-based
positives

dynamic tools, and
Pulse

> Pulse can detect deadlocks that the other tools cannot

Systems & Architecture

Qutline

» Motivation

» Overview of Pulse
» Design

> Implementation

» Evaluation

» Conclusion

Systems & Architecture

Overview of Pulse

» Features: Dynamic, speculative execution, general

resource graph
no long sleeping
period process found
check

> Pulse runs as a daemon process

detection
finished

» Three modes
* Nap: sleeps in kernel

Detection

» Monitor: looks for long-sleeping long sleeping
processes/threads process found
» Detection

— Long-sleeping processes are potentially deadlocked

ystems & Architecture

>

>

>

>

Detection Mode

ldentify events long-sleeping processes are waiting for
* E.g., semaphore up: V(sem)

Fork each process to create a speculative process

Unblock speculative process
* E.g., “up” the semaphore in its own address space

Record events generated by speculative processes
* E.g., all semaphore up operations

Construct general resource graph and check for cycle

ystems & Architecture

Example: Smokers Problem

» Three smokers, one agent

» Three ingredients: paper, tobacco, matches

» Each smoker has one ingredient, but needs two more
» Agent puts out two at a time

» One smoker gets them and signals agent to continue

Smoker 1 Smoker 2 Smoker 3 Agent

while (1) { while (1) { while (1) { while (1) {
P(tobacco) P(paper) /I block P(matches) P(order) // block
P(paper) // block P(matches) P(tobacco) // block V(one of tobacco, paper,
V(order) V(order) V(order) matches at random)

} } } V(one of the three at

random but not above)

}
» Semaphores for synchronization, not mutual exclusion

10
D U/KE Architectur

Constructing Process Nodes

> Enter detection mode after all blocked for a long time
» Construct a process node for each long-sleeping process

Smoker 1 Smoker 2

while (1) { while (1) {
P(tobacco) P(paper) // block
P(paper) // block P(matches)
V(order) V(order)

} }

Smoker 3 Agent

while (1) { while (1) {
P(matches) P(order) // block
P(tobacco) // block V(one of tobacco, paper,
V(order) matches at random)

} V(one of the three at

random but not above)

}

rchitecture

agent

smokerl

smoker2

smoker3

11

Constructing Event Nodes

» Construct an event node for the event each process is
waiting for

Smoker 1 Smoker 2

while (1) { while (1) {
P(tobacco) P(paper) // block
P(paper) // block P(matches)
V(order) V(order)

} }

Smoker 3 Agent ‘ ‘

while (1) { while (1) {
P(matches) P(order) // block
P(tobacco) // block V(one of tobacco, paper,
V(order) matches at random)

} V(one of the three at

random but not above)

}

Systems & Architecture

Constructing Request Edges

» Construct request edge from process node to event node

waiting for V(paper)

Smoker 1 Smoker 2 /
while (1) { while (1) {
P(tobacco) P(paper) // block
P(paper) // block P(matches)
V(order) V(order)
} }
Smoker 3 Agent *‘ ‘
while (1) { while (1) {
P(matches) P(order) // block
P(tobacco) // block V(one of tobacco, paper,
V(order) matches at random)
} V(one of the three at
random but not above)
}

13

Systems & Architecture

Constructing Producer Edges

» Speculatively execute processes ahead
» Smoker 1 produces V(order), agent produces V(paper)
» Construct producer edge from event to process node

Smoker 1 Smoker 2
while (1) { while (1) {
P(tobacco) P(paper) // block SuEnt
P(paper) // block P(matches)
V(order) V(order)
} }
Smoker 3 Agent V(tobacco)
while (1) { while (1) {
P(matches) P(order) // block f
P(tobacco) // block| V(one of tobacco, paper,
V(order) matches at random) smoker3
} V(one of the three at
random but not above)
}
14

ystems & Architecture

Final Resource Graph

» A cycle indicates potential deadlock
» Processes: represented by PIDs
» Events: (resource, condition) ® (semaphore address, > 0)

15

Systems & Architecture

Design Issues — Constructing Nodes

» Process nodes
 Those processes asleep for a long time

> Event nodes PID 19629

(agent)

 Need to know the events for
which a process is waiting

« Modify all blocking system —>
calls to record the events

 Modified calls record events In 15 10630
a per-process structure (smoker1)

0x8049eb8
>0
V(tobacco

0x8049eec 0x8049edc

PID 19632
(smoker3)

PID 19631
(smoker2)

16

& Architecture

Design Issues — Constructing Edges

> Request edges
* Constructed together with event nodes

» Producer edges

Need to know what events a
process can produce

Modify all counterpart system
calls (calls that unblock the
blocking ones)

Record events in an event
buffer until the speculative
process terminates (normal
exit, full buffer, timeout)

rchitecture

PID 19629
(agent)

0x8049eb8

PID 19632
(smoker3)

PID 19631
(smoker2)

PID 19630
(smokerl)

17

Safe Speculation

» Cannot change state of any other process
* No change to memory state of other processes
* No writes to file system (including I/O devices)
* No signals to other processes

Solution:
» Similar to Fraser and Chang USENIX'03
» Fork with copy-on-write enabled

> Modify unsafe system calls (e.g., write, kill)
» Speculative processes record the events they produce
* Then return immediately

| 18
ST ——

Limitations of Pulse

> False positives
e Speculation may run unrealistic program paths

* May have wrong cycles if resources are not consumable
* For resources that are not single-unit reusable, a cycle is
only necessary but not sufficient
> False negatives
* Speculative processes miss relevant events
— Programmer forgot V(sem)
— Speculation not long enough
— Event buffer full
— Unrealistic program paths

» Self-breaking mechanisms with timeouts

19

ystems & Architecture

» Motivation

» Overview of Pulse
» Design

> Implementation

» Evaluation

» Conclusion

Qutline

Systems & Architecture

20

Implementation

» Linux kernel 2.6.8.1
» Modified three blocking system calls
« futex, write (to pipe), and poll
» Modified four counterpart system calls
 futex, read, and write/writev
» Our approach can be applied easily to modify other syscalls
» Forking an arbitrary process: fork(P)
» EXxisting fork copies the caller process

e Adding a process argument to existing fork doesn’t work
« We use existing fork with only slight modifications

21

Forking Blocked Processes

@ To fork process P, first switch P in using
our own context-switch function

@ P calls the usual fork routine to create
speculative process P’

@ P’ fakes the awaited event, calls syscall_exit
with success, and resumes P’s program

@ Finally, P switches the Pulse process back
In and then P goes back to sleep

& Architecture

Evaluation

> All experiments on an 8-processor IBM x445 eServer

» Fork was the most involved part in coding

* But only one-time effort

« Code is small and efficient

— 94 lines of C, 47 lines of inline assembly, 7 lines assembly

» Three deadlock benchmarks

* Smokers Problem (discussed earlier)

* Dining-philosophers Problem

« Apache 2.0.49

ystems & Architecture

23

Dining Philosophers Problem

» Deadlock if all philosophers take left forks at same time

Philosopher i
while (1) {
think()
lock(fork([i]) /I take left fork
block == lock(fork[(i+1) % 5] // take right fork
eat();
unlock(fork{i]); I/ put left fork
unlock(fork[(i+1) % 5] I/ put right fork
}

» All existing tools target this type of deadlock

24

Architecture

Dining Philosophers Problem

> Hex numbers are virtual addresses of lock variables
> Sqguares: processes, circles: events, edges: dependences

Systems & Architecture

Apache Deadlock

» Apache 2.0.49 with prefork Multi-Processing Module (MPM)
» Two-process deadlock:

* A CGlI script’s process blocks when writing to stderr pipe

* An httpd process blocks when reading from stdout pipe

« Each can be unblocked only by the other

> Not detectable by WFGs and RacerX
» Pulse successfully detects it

» Hex numbers are addresses PID 31042
of pipe inode structures (CGl script)

Oxee3b9380
stderr pipe
read

Oxee3b9500
stdout pipe
write

| 26
ST ——

PID 31036
(httpd)

Performance Overhead

» Overhead of the modified system calls
* Average slowdown per call: futex 0.2%, write 0.9%, poll 1%

» Overhead of periodic checking
* Nap to monitor, and back to nap

(5-min check interval): ~0.3 detection no long sleeping
seconds for 2000 processes finished period \ \Process found
. . h k
- Apache Bench (1-min interval): enee

throughput difference < 0.2% w/ Detection

and w/o Pulse long sleeping
process found

> Overhead of deadlock detection

 Less than 3 seconds from detection to finish

27

o ‘ Architecture

Conclusion

» Deadlock is potential problem for all multithreaded programs

> Existing detection tools focus on lock-like resources

» Pulse: dynamic, speculation, general resource graph

> Can detect deadlocks with non-lock-like resources
* E.g., synchronization semaphores, pipes

» Linux implementation

» Evaluation
* Dining-philosophers, smokers, Apache
* Negligible performance overhead

| 28
ST ——

