
Efficient and Scalable Multiprocessor Fair Scheduling
Using Distributed Weighted Round-Robin

Tong Li Dan Baumberger Scott Hahn
Intel Corporation

2111 NE 25th Ave., Hillsboro, OR, USA
{tong.n.li,dan.baumberger,scott.hahn}@intel.com

Abstract
Fairness is an essential requirement of any operating system sched-
uler. Unfortunately, existing fair scheduling algorithmsare either
inaccurate or inefficient and non-scalable for multiprocessors. This
problem is becoming increasingly severe as the hardware industry
continues to produce larger scale multi-core processors. This pa-
per presentsDistributed Weighted Round-Robin(DWRR), a new
scheduling algorithm that solves this problem. With distributed
thread queues and small additional overhead to the underlying
scheduler, DWRR achieves high efficiency and scalability. Besides
conventional priorities, DWRR enables users to specify weights to
threads and achieve accurate proportional CPU sharing withcon-
stant error bounds. DWRR operates in concert with existing sched-
uler policies targeting other system attributes, such as latency and
throughput. As a result, it provides a practical solution for various
production OSes. To demonstrate the versatility of DWRR, wehave
implemented it in Linux kernels 2.6.22.15 and 2.6.24, whichrepre-
sent two vastly different scheduler designs. Our evaluation shows
that DWRR achieves accurate proportional fairness and highper-
formance for a diverse set of workloads.

Categories and Subject Descriptors D.4.1 [Operating Systems]:
Process Management—Scheduling

General Terms Algorithms, Design, Experimentation, Perfor-
mance, Theory

Keywords Fair scheduling, distributed weighted round-robin,
multiprocessor, lag

1. Introduction
Proportional fair scheduling has long been studied in operating
systems, networking, and real-time systems. The conventional ap-
proach is to assign each task a weight and the scheduler ensures
that each task receives service time proportional to its weight [26].
Since perfect fairness requires infinitesimally small scheduling
quanta, which is infeasible, all practical schedulers approximate
it with the goal of obtaining small error bounds.

Though well-defined, proportional fairness has not been adopted
in most general-purpose OSes, such as Mac OS* , Solaris* , Windows* ,
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and Linux* prior to version 2.6.23. These OSes adopt an imprecise
notion of fairness that seeks to prevent starvation and be “reason-
ably” fair. In these designs, the scheduler dispatches threads in the
order of thread priorities. For each thread, it assigns the thread a
time slice (or quantum) that determines how long the thread can
run once dispatched. A higher-priority thread receives a larger time
slice—how much larger is often determined empirically, nota pro-
portional function of the thread’s priority. To facilitatefairness, the
scheduler also dynamically adjusts priorities, for example, by al-
lowing the priority of a thread to decay over time but boosting it if
the thread has not run for a while [12, 18]. Similar to time slices,
the parameters of these adjustments, such as the decay rate,are
often empirically determined and are very heuristic.

The lack of precise definition and enforcement of fairness can
lead to three problems. First, it can cause starvation and poor
I/O performance under high CPU load. As an example, we ran
32 CPU-intensive threads on a dual-core system with Windows
XP* and Linux* kernel 2.6.22.15. In both cases, the windowing
system was quickly starved and non-responsive. Second, thelack
of precise fairness can cause poor support for real-time applications
as proportional fair scheduling is the only known way to optimally
schedule periodic real-time tasks on multiprocessors [1, 29]. Third,
it leads to inadequate support for server environments, such as
data centers, which require accurate resource provisioning. Unlike
traditional data centers, which use discrete systems to serve clients,
the trend of multi-core processors enables more services tobe
consolidated onto a single server, saving floor space and electricity.
In these environments, one multiprocessor system servicesmultiple
client applications with varying importance and quality-of-service
(QoS) requirements. The OS must be able to accurately control the
service time for each application.

Many proportional fair scheduling algorithms exist, but none of
them provides a practical solution for large-scale multiprocessors.
Most algorithms are inefficient and non-scalable due to the use of
global run queues. Accessing these global structures requires lock-
ing to prevent data races, which can cause excessive serialization
and lock contention when the number of CPUs is high. Further-
more, writes to the global queues invalidate cache lines shared by
other CPUs, which increases bus traffic and can lead to poor per-
formance. Algorithms based on per-CPU run queues resolve these
problems; however, all of the existing algorithms are either weak
in fairness or slow for latency-sensitive applications. Asmulti-core
architectures continue to proliferate, the OS must keep up with ef-
ficient and scalable designs for fair scheduling.

This paper presentsDistributed Weighted Round-Robin(DWRR),
a new scheduling algorithm with the following features:

• Accurate fairness. Using the Generalized Processor Sharing
(GPS) model [26], DWRR achieves accurate proportional fair-
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ness with constant error bounds, independent of the number of
threads and CPUs in the system.

• Efficient and scalable operation. DWRR uses per-CPU run
queues and adds low overhead to an existing OS scheduler, even
when threads dynamically arrive, depart, or change weights.

• Flexible user control. DWRR assigns a default weight to each
thread based on its priority and provides additional support for
users to specify thread weights to control QoS.

• High performance.DWRR works in concert with existing sched-
uler policies targeting other system attributes, such as latency and
throughput, and thus enables high performance as well as accu-
rate fairness.

The remainder of this paper is organized as follows. Section2
discusses background and related work. Section 3 describesthe
DWRR algorithm. We discuss our Linux implementation in Sec-
tion 4 and experimental results in Section 5, which show that
DWRR achieves accurate fairness with low overheads. In Section 6,
we present a formal analysis of DWRR’s fairness properties and
prove that it achieves constant error bounds compared to theideal-
ized GPS system with perfect fairness. We conclude in Section 7.

2. Background on Fair Scheduling
Generalized Processor Sharing(GPS) is an idealized scheduling
algorithm that achieves perfect fairness. All practical schedulers
approximate GPS and use it as a reference to measure fairness.

2.1 The GPS Model

Consider a system withP CPUs andN threads. Each threadi,
1 ≤ i ≤ N , has a weightwi. A scheduler is perfectly fair if (1)
it is work-conserving, i.e., it never leaves a CPU idle if there are
runnable threads, and (2) it allocates CPU time to threads inexact
proportion to their weights. Such a scheduler is commonly referred
to as Generalized Processor Sharing (GPS) [26]. LetSi(t1, t2) be
the amount of CPU time that threadi receives in interval[t1, t2]. A
GPS scheduler is defined as follows [26].

Definition 1. A GPS scheduler is one for which

Si(t1, t2)

Sj(t1, t2)
≥ wi

wj

, j = 1, 2, . . . , N

holds for any threadi that is continuously runnable in[t1, t2] and
bothwi andwj are fixed in that interval.

From this definition, two properties of GPS follow:

Property 1. If both threadsi andj are continuously runnable with
fixed weights in[t1, t2], then GPS satisfies

Si(t1, t2)

Sj(t1, t2)
=

wi

wj

.

Property 2. If the set of runnable threads,Φ, and their weights
remain unchanged throughout the interval[t1, t2], then, for any
threadi ∈ Φ, GPS satisfies

Si(t1, t2) =
wi

P

j∈Φ
wj

(t2 − t1)P.

Most prior research applied the GPS model to uniprocessor
scheduling. For multiprocessors, some weight assignmentscan be
infeasible and thus no GPS scheduler can exist [9]. For example,
consider a two-CPU system with two threads wherew1 = 1 and
w2 = 10. Since a thread can run on only one CPU at a time, it is
impossible for thread 2 to receive 10 times more CPU time than
thread 1 unless the system is non-work-conserving. Chandraet
al. [9] introduced the following definition:

Definition 2. In any given interval[t1, t2], the weightwi of thread
i is infeasible if

wi
P

j∈Φ
wj

>
1

P
,

whereΦ is the set of runnable threads that remain unchanged in
[t1, t2] andP is the number of CPUs.

An infeasible weight represents a resource demand that exceeds
the system capability. Chandra et al. [9] showed that, in aP -
CPU system, no more thanP − 1 threads can have infeasible
weights. They proposed converting infeasible weights intotheir
closest feasible ones. With this conversion, a GPS scheduler is well-
defined for any multiprocessor system.

A GPS scheduler is idealized since, for Definition 1 to hold, all
runnable threads must run simultaneously and be scheduled with
infinitesimally small quanta, which is infeasible. Thus, all prac-
tical fair schedulers emulate GPS approximately and are evalu-
ated from two aspects: fairness and time complexity.Lag is the
commonly-used metric for fairness [1]. Assume that threadsi and
j are both runnable and have a fixed weight in the interval[t1, t2].
Let Si,A(t1, t2) andSj,A(t1, t2) denote the CPU time thati andj
receive in[t1, t2] under some algorithmA.

Definition 3. For any interval[t1, t2], the lag of threadi at time
t ∈ [t1, t2] is

lagi(t) = Si,GPS(t1, t) − Si,A(t1, t).

A positive lag at timet implies that the thread has received less
service than under GPS; a negative lag implies the opposite.All
fair scheduling algorithms seek to bound the positive and negative
lags—the smaller the bounds are, the fairer the algorithm is. An
algorithm achieves strong fairness if its lags are bounded by small
constants. On the other hand, fairness is poor and non-scalable if
the lag bounds are anO(N) function, whereN is the number of
threads, because the algorithm increasingly deviates fromGPS as
the number of threads in the system increases.

2.2 Previous Work

Fair scheduling has its roots in operating systems, networking, and
real-time systems. Since the algorithms designed for one area are
often applicable to another, we survey prior designs in all of the
three areas and classify them into three categories.

2.2.1 Virtual-time-based Algorithms

These algorithms define a virtual time for each task or network
packet. With careful design, they can achieve the strongestfairness
with constant lag bounds. The disadvantage is that they relyon
ordering tasks or packets and requireO(log N) or, in some cases,
O(N log N) time, whereN is the number of tasks or network
flows. Strong fairness also often relies on the use of centralized run
queues, which limits efficiency and scalability of these algorithms.
Next, we discuss some representative algorithms in this category.

In networking, Demers et al. [10] proposed Weighted-Fair
Queuing (WFQ) based on packet departure times for single-link
fair scheduling. Parekh and Gallager [26] showed that WFQ
achieves a constant positive lag bound butO(N) negative lag
bound, whereN is the number of flows. WF2Q [3] improves WFQ
to achieve a constant bound for both positive and negative lag.
Blanquer andÖzden [4] extended WFQ and WF2Q to multi-link
scheduling. Other algorithms [13, 15, 16] use packet virtual arrival
times and have similar bounds to WFQ.

In real-time systems, previous algorithms [1, 2] obtained con-
stant lag bounds. Many studied adding real-time support to general-
purpose OSes. Earliest Eligible Virtual Deadline First (EEVDF) [31]
achieves constant positive and negative lag bounds, whereas Bi-
ased Virtual Finishing Time (BVFT) [24] obtains similar bounds
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to WFQ. For general-purpose OSes, Surplus Fair Scheduling
(SFS) [9], Borrowed-Virtual-Time (BVT) [11], Start-time Fair
Queuing (SFQ) [14], and the Completely Fair Scheduler (CFS)in-
troduced in Linux 2.6.23 all have similar designs to WFQ and thus
obtain a constant positive lag bound butO(N) negative bound.

Many systems [19, 22, 30] use the Earliest Deadline First (EDF)
or Rate Monotonic (RM) algorithm [21] to achieve fair schedul-
ing. The Eclipse OS [5] introduced Move-To-Rear List Scheduling
(MTR-LS). Though not using virtual time explicitly, these algo-
rithms are all similar to WFQ in principle and thus have similar lag
bounds andO(log N) time complexity.

2.2.2 Round-robin Algorithms

These algorithms extend Weighted Round-Robin (WRR) [23],
which serves flows in round-robin order and transmits for each
flow a number of packets proportional to its weight. Round-robin
algorithms haveO(1) time complexity and thus are highly effi-
cient. However, they have weak fairness withO(N) lag bounds
in general. Nevertheless, if task or flow weights are boundedby
a constant, a reasonable assumption in practice, they can achieve
constant positive and negative lag bounds. Thus, round-robin algo-
rithms are perfect candidates for OSes to use to achieve efficient
and scalable fair scheduling.

Unfortunately, most existing round-robin algorithms are non-
scalable for multiprocessors because they use centralizedqueues
or weight matrices, such as Group Ratio Round-Robin (GR3) [6],
Smoothed Round-Robin (SRR) [17], Virtual-Time Round-Robin
(VTRR) [25], and Deficit Round-Robin (DRR) [28]. To the best
of our knowledge, Grouped Distributed Queues (GDQ) [7] is the
only general-purpose OS scheduling algorithm except DWRR that
achieves constant positive and negative lag bounds, and uses dis-
tributed thread queues. However, GDQ requires significant changes
to an existing scheduler and thus does not provide a practical solu-
tion. Since it is incompatible with existing OS scheduler policies,
such as dynamic priorities and load balancing, which optimize for
latency and throughput, GDQ can cause performance slowdowns.
In contrast, DWRR works in concert with these policies and retains
high performance of the underlying scheduler.

2.2.3 Other Algorithms

Lottery scheduling [33] is a randomized algorithm with an ex-
pected lag boundO(

√
N) and worst-case boundO(N). Stride

scheduling [32] improves it to a deterministicO(log N) lag bound,
but still has weak fairness. Both algorithms have time complexity
O(log N). Petrou et al. [27] extended lottery scheduling to obtain
faster response time, but did not improve its time complexity in
general. Recently, Chandra and Shenoy [8] proposed Hierarchical
Multiprocessor Scheduling (H-SMP) to support fair scheduling of
groups of threads, which can be complementary to DWRR. H-SMP
consists of a space scheduler, which assigns integral numbers of
CPUs to thread groups, and an auxiliary scheduler, which uses any
previous fair scheduler to provision the residual CPU bandwidth.

3.Distributed Weighted Round-Robin
This section gives an overview of DWRR, discusses its algorithm
details, and illustrates its operation with an example.

3.1 Overview

DWRR works on top of an existing scheduler that uses per-CPU run
queues, such as FreeBSD* 5.2, Linux* 2.6, Solaris* 10, and Win-
dows Server* 2003. As its name suggests, DWRR is a distributed
version of WRR. The problem with WRR is that it requires a global
queue to maintain round-robin ordering—in each round, the sched-
uler scans the queue and schedules threads in the queue order. For
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Figure 1: DWRR per-CPU thread queues. Curved lines represent
threads.round-activeand-expireduse the same data structures.

DWRR, we observe that, to achieve fairness, threads do not need
to run in the same order in each round—they can run in any order
any number of times, as long as their total runtime per round is
proportional to their weights.

DWRR maintains around numberfor each CPU, initially zero.
For each thread, we define itsround sliceto bew · B, wherew is
the thread’s weight andB is a system-wide constant,round slice
unit. A round in DWRR is the shortest time period during which
every thread in the system completes at least one of its roundslice.
The round slice of a thread determines the total CPU time thatthe
thread is allowed to receive in each round. For example, if a thread
has weight two andB is 30 ms, then it can run at most 60 ms in
each round. The value ofB is an implementation choice. As we
show in Section 6, a smallerB leads to stronger fairness but lower
performance, and vice versa.

When a thread uses up its round slice, we say that this thread has
finished a round. Thus, DWRR removes it from the CPU run queue
to prevent it from running again. When all threads on this CPUhave
finished the current DWRR round, DWRR searches other CPUs for
threads that have not and move them over. If none is found, the
CPU increments its round number and allows all local threadsto
advance to the next round with a full round slice.

3.2 Algorithm

This section describes DWRR in detail. On each CPU, DWRR
performsround slicing to achieve local fairness; across CPUs, it
performsround balancingto achieve global fairness.

3.2.1 Round Slicing

Besides the existing run queue on each CPU, which we callround-
active, DWRR adds one more queue,round-expired. Though com-
monly referred to as a “queue” in scheduler nomenclature, the run
queue can be implemented with any data structure. For example,
many OSes implement it as an array of lists, where each list cor-
responds to one priority and contains all threads at that priority,
whereas the recent CFS in Linux implements it as a red-black tree.
Whatever the structure is, DWRR retains it in bothround-active
andround-expired. Figure 1 illustrates these data structures.

On each CPU, bothround-activeand round-expiredare ini-
tially empty and the round number is zero. The scheduler inserts
each runnable thread intoround-activeand dispatches threads from
there, as it normally does. For all threads inround-active, the CPU’s
round number defines the round in which they are running. DWRR
places no control over threads’ dispatching order. For example,
if the underlying scheduler dispatches threads based on priorities,
DWRR retains that order. This feature is key to DWRR’s ability
to keep similar fast response time to the underlying scheduler for
latency-sensitive applications.

With any existing scheduler, a thread may run for a while, yield
to another thread (e.g., due to quantum expiration), and runagain.
DWRR monitors each thread’scumulativeruntime in each round.
Whenever it exceeds the thread’s round slice, DWRR preempts
the thread, removes it fromround-active, and inserts intoround-
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expired, all in O(1) time, i.e., a small constant time independent of
the number of threads and CPUs in the system. Thus, at any time,
DWRR maintains the invariant that if a CPU’s round number is
R, then all threads in itsround-activequeue are running in round
R and all threads inround-expiredhave finished roundR and are
waiting to start roundR + 1. Next, we discuss when a CPU can
advance from roundR to R + 1.

3.2.2 Round Balancing

To achieve fairness across CPUs, DWRR ensures that all CPUs in
the common case differ at most by one in their round numbers.
Section 6 describes this property precisely and proves how it leads
to strong fairness. Intuitively, this property enables fairness because
it allows threads to go through the same number of rounds (i.e.,
run for the same number of their respective round slices) in any
time interval. To enforce this property, whenever a CPU finishes
a round, i.e., itsround-activequeue becomes empty, it performs
round balancing to move over threads from other CPUs before
advancing to the next round.

To aid round balancing, DWRR keeps a global variable,highest,
which tracks the highest round number among all CPUs at any
time. Section 3.2.4 addresses scalability issues with thisglobal
variable. Letround(p) be the round number of CPUp. Whenever
p’s round-activeturns empty, DWRR performs round balancing as
follows:

Step 1: If round(p) equalshighest orp’s round-expiredis empty,
then

(i) DWRR scans other CPUs to identify threads in roundhighest
or highest− 1 and currently not running (excluding those that
have finished roundhighest). These threads exist inround-
active of a roundhighest CPU or round-activeand round-
expiredof a roundhighest − 1 CPU.

(ii) If step i finds a non-zero number of threads, DWRR movesX
of them toround-activeof p. The value ofX and from which
CPU(s) to move theseX threads affect only performance, not
fairness, and thus are left as an implementation choice. Note
that after allX threads finish their round slices onp, p’s round-
active turns empty again. Thus, it will repeat Step 1 and can
potentially move more threads over.

(iii) If step i finds no threads, then either no runnable threads exist
or they are all currently running, sop is free to advance to the
next round. Thus, DWRR continues to step 2.

Step 2: If p’s round-activeis (still) empty, then

(i) DWRR switchesp’s round-activeand round-expired, i.e., the
old round-expiredqueue becomes the newround-activeand the
newround-expiredbecomes empty.

(ii) If the new round-activeis empty, then either no runnable thread
exists or all runnable threads in the system are already running;
thus, DWRR setsp to idle and round(p) to zero. Else, it
incrementsround(p) by one, which advances all local threads
to the next round, and updateshighest if the newround(p) is
greater.

Figure 2 summarizes this algorithm in a flowchart. These oper-
ations add little overhead to the underlying scheduler, since most
OSes already perform similar operations when a run queue is
empty. For example, Linux* 2.6, Solaris* 10, and Windows Server*

2003 all search other CPUs for threads to migrate to the idle CPU
for load balancing. DWRR simply modifies that operation by con-
straining the set of CPUs from which threads can migrate. As a
proof-of-concept, we have modified Linux as follows.

Let p be a CPU whoseround-activeturns empty. When DWRR
scans other CPUs for threads in roundhighest or highest−1, for

Figure 2: Flowchart of DWRR’s round balancing algorithm.

the first roundhighest − 1 CPU,pa, it identifies, it moves⌈X/2⌉
threads frompa’s round-expiredtop’s round-active, whereX is the
number of threads inpa’s round-expired. Among all CPUs in round
highest or highest − 1, DWRR also finds the most loaded one
(counting only threads inround-active), pb, where load is subject
to the definition of the underlying scheduler. It movesY threads
from pb’s round-activeto p’s round-active, whereY is the number
of threads that, if moved top, the load onp would equal the average
CPU load (i.e., total system load divided by the number of CPUs).

3.2.3 Dynamic Events and Infeasible Weights

Whenever the OS creates a thread or awakens an existing one,
DWRR locates the least loaded CPU among those that are either
idle or in roundhighest. It then inserts the thread intoround-
activeof the chosen CPU. If this CPU is idle, DWRR sets its round
number to the current value ofhighest. A thread’s departure (when
it exits or goes to sleep) affects no other thread’s weight and thus
requires no special handling in DWRR. If the user dynamically
changes a thread’s weight, DWRR simply updates the thread’s
round slice based on its new weight.

A unique feature of DWRR is that it needs no weight adjustment
for infeasible weights, an expensive operation that requires sorting
the weights of all threads in the system [9]. With DWRR, any thread
with an infeasible weight may initially share a CPU with other
threads. Since it has a larger weight, it remains inround-active
when other threads on the same CPU have exhausted their round
slices and moved toround-expired. Once its CPU’s round number
falls belowhighest, round balancing will move threads inround-
expired to other CPUs. Eventually, this thread becomes the only
one on its CPU, which is the best any design can do to fulfill an
infeasible weight.

4



round−active

A

B

round−expired

Round 0
CPU 0

round−activeround−expired

Round 0
CPU 1

round−active

A

round−expired

Round 0
CPU 0

round−activeround−expired

Round 0
CPU 1

C CB

round−activeround−expired

Round 0
CPU 0

round−activeround−expired

Round 0
CPU 1

round−active

A

round−expired

Round 1
CPU 0

round−active

C

round−expired

Round 1
CPU 1

Time 1.5

Time 1

Time 0

A C

B B

round−active

A

B

round−expired

Round 0
CPU 0

round−active

C

round−expired

Round 0
CPU 1

             Time 0: A and B start on CPU 0, C on CPU 1.
Time 1 (left): A and B each finish half a round and remain in round−active.

Time 1 (right): CPU 1 performs round balancing and moves B over.
Time 1.5 (left): A and B both finish one round and move to round−expired.
Time 1.5 (right): Both CPU 0 and 1 have nothing to do for round balancing.
     So they switch round−active and −expired, and advance to next round.

 C finishes one round and moves to round−expired.

Assume A, B, and C have weight one and round slice of one time unit.

⇒

⇒

Figure 3: Example of DWRR’s operation.

3.2.4 Performance Considerations

The global variablehighest presents a synchronization challenge.
For example, suppose two CPUs,A and B, are both in round
highest and each has one thread running. When a new thread,T ,
arrives, DWRR picksA as the least loaded CPU in roundhighest
and assignsT to it. Suppose that, before DWRR insertsT into A’s
round-active, the thread onB finishes its round and moves toB’s
round-expired. CPU B then performs round balancing, but finds
no thread to move over. Thus, it advances to the next round and
updateshighest. Now DWRR insertsT into A’s round-active, but
A is no longer in roundhighest.

A simple solution to this race is to use a lock to serialize
round balancing and thread arrival handling, which, however, can
seriously limit performance and scalability. Instead, we found that
this race does no harm. First, it affects only thread placement,
not correctness. Second, as Section 6 shows, it does not impact
fairness—DWRR achieves constant lag bounds regardless. Thus,
we allow unprotected access tohighest with no special handling.

Another concern is that DWRR could introduce more thread
migrations and thus more cache misses. Our results in Section 5.2
show that migrations on SMPs have negligible performance impact.
This is especially true when there are more threads than CPUs,
which is when round balancing takes place, because a thread’s
cache content is often evicted by peers on the same CPU even
if it does not migrate. On the other hand, migrations can impact
performance significantly on NUMA systems when threads migrate
off their home memory nodes [20]. With DWRR, users can balance
between performance and fairness by tuning the round slice unit
B. A largerB value leads to less frequent migrations, but weaker
fairness, as we show in Section 6.

3.3 Example

Figure 3 shows a simple example of DWRR’s operation. Assume
two CPUs and three threads,A, B, andC, each with weight one

and round slice of one time unit. At time 0,A andB are inround-
activeof CPU 0 andC in round-activeof CPU 1. At time 1, both
A and B have run half a time unit andC has run one time unit.
Thus,C moves toround-expiredon CPU 1. Since itsround-active
becomes empty, CPU 1 performs round balancing and movesB
to its round-active, but notA because it is currently running. At
time 1.5, bothA andB have run for one time unit, so they move
to round-expiredof their CPUs. Both CPUs then perform round
balancing, but find no thread to move. Thus, they switchround-
activeandround-expired, and advance to round 1.

4. Implementation
DWRR can be easily integrated with an existing scheduler based
on per-CPU run queues. To demonstrate its versatility, we have
implemented DWRR in two Linux kernel versions: 2.6.22.15 and
2.6.24. The former is the last version based on the so-calledLinux
O(1) scheduler and the latter is based on CFS. Our code is available
athttp://triosched.sourceforge.net.

In the O(1) scheduler, each CPU run queue consists of two
thread arrays:active and expired. They collectively formround-
active in DWRR and we added a third array asround-expired. In
CFS, each run queue is implemented as a red-black tree. We use
this tree asround-activeand added one more tree to act asround-
expired. In our Linux 2.6.22.15 implementation, we assign each
thread a default weight, equal to its time slice divided by the sys-
tem’s default time slice (100 ms). Linux 2.6.24 already assigns each
thread a weight based on its static priority, so our implementation
retains this weight as default. In both implementations, weadded
a system call that allows the user to flexibly control the weight of
each thread by setting it to any arbitrary value.

The O(1) scheduler has poor fairness. CFS obtains accurate
fairness within a CPU, but unbounded lag across CPUs. To support
fast response time, theO(1) scheduler uses heuristics to dynami-
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  PID  PR  NI %CPU    TIME+  COMMAND
 3195  25   0  100   0:07.58 while1 
 3196  25   0  100   0:07.58 while1 
 3197  25   0  100   0:07.56 while1 
 3198  25   0  100   0:07.56 while1 
 3199  25   0  100   0:07.56 while1 
 3200  25   0  100   0:07.55 while1 
 3201  25   0   50   0:03.84 while1 
 3202  25   0   50   0:03.70 while1 
 3203  25   0   50   0:03.81 while1 
 3204  25   0   50   0:03.72 while1 

(a) Linux 2.6.22.15.

  PID  PR  NI %CPU    TIME+  COMMAND
 3218  25   0   81   0:05.24 while1 
 3211  25   0   80   0:05.24 while1 
 3215  25   0   80   0:05.24 while1 
 3214  25   0   80   0:05.22 while1 
 3216  25   0   80   0:05.22 while1 
 3217  25   0   80   0:05.23 while1 
 3219  25   0   80   0:05.22 while1 
 3210  25   0   80   0:05.22 while1 
 3212  25   0   80   0:05.22 while1 
 3213  25   0   80   0:05.22 while1 

(b) 2.6.22.15 with DWRR.

 PID  PR  NI %CPU    TIME+  COMMAND                
3983  20   0   90   0:07.90 while1                                             
3985  20   0   85   0:07.60 while1                                             
3980  20   0   82   0:07.44 while1                                             
3988  20   0   79   0:07.00 while1                                             
3987  20   0   79   0:07.54 while1                                             
3979  20   0   78   0:07.38 while1                                             
3981  20   0   78   0:07.10 while1                                             
3984  20   0   78   0:06.86 while1                                             
3986  20   0   78   0:07.70 while1                                             
3982  20   0   73   0:07.08 while1         

(c) Linux 2.6.24.

 PID  PR  NI %CPU    TIME+  COMMAND                                           
3470  20   0   80   0:08.66 while1                                             
3473  20   0   80   0:08.66 while1                                             
3475  20   0   80   0:08.66 while1                                             
3476  20   0   80   0:08.66 while1                                             
3479  20   0   80   0:08.66 while1                                             
3471  20   0   80   0:08.64 while1                                             
3472  20   0   80   0:08.64 while1                                             
3474  20   0   80   0:08.66 while1                                             
3478  20   0   80   0:08.64 while1                                             
3477  20   0   79   0:08.64 while1     

(d) 2.6.24 with DWRR.

Figure 4: Snapshots oftop for 10 threads on 8 CPUs.
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Figure 6: Weighted fairness for four foreground threads.

cally adjust thread priorities, which, however, is often ineffective.
CFS is much better as it is able to bound thread waiting times.Com-
bining CFS and DWRR enabled us to obtain both accurate fairness
and high performance. Our implementation in Linux 2.6.22.15 uses
100 ms as the round slice unit and 2.6.24 uses 30 ms, which showed
to be a good balance between fairness and performance in our ex-
periments. Unless otherwise mentioned, our test system is an 8-
CPU server with two Intel® Xeon® X5355 quad-core processors.

5. Experimental Results
We evaluate DWRR in terms of its fairness and performance.

5.1 Fairness

Since fairness is trivial if the number of threads is a multiple of the
number of CPUs, we ran 10 threads on the 8-CPU system, each an
infinite loop, and usedtop to monitor CPU allocation. Figure 4
shows snapshots oftop for the two Linux versions with and
without DWRR. As we can see, the 2.6.22.15O(1) scheduler has
poor fairness, 2.6.24 CFS improves it slightly, and both versions
with DWRR achieve nearly perfect fairness.

Our next benchmark evaluates the lag of CFS and DWRR. The
goal is to show that DWRR is fairer in more complex settings
where threads have different priorities (weights). The benchmark

consists of 16 threads, five at nice level one (low priority) and
the rest nice zero (default priority). The benchmark runs for 20
minutes and samples the CPU time of each thread everyt seconds.
For each sampling interval, it computes the lag of the threadfor
this time interval and its relative error, defined as lag divided by
the ideal CPU time the thread would receive during this interval
if under GPS. Figure 5 shows our results fort equal to 5, 30, 60,
and 120 seconds. For a given sampling interval, each bar shows the
maximum absolute lag value among all threads throughout the20-
minute run; above each bar is the maximum relative error. We see
that Linux 2.6.24 (based on CFS) has a large relative error and, as
the sampling interval increases, its lag increases linearly with no
bound. In contrast, lag under DWRR is bounded by 0.5 seconds for
all sampling intervals. Thus, DWRR achieves much better fairness.

To evaluate DWRR’s fairness for different weights, we ran four
threads of weights one, two, three, and four. Since our system
has eight CPUs, we ran eight more threads of weight three in
background such that all weights are feasible. We ran for five
minutes and sampled the cumulative CPU time of each thread
every five seconds. Figure 6 plots our results, which show accurate
correlation between thread weights and CPU times.

Finally, we ran SPECjbb2005* to demonstrate DWRR’s fairness
under realistic workload. The benchmark is multithreaded where
each thread simulates a set of business transactions (details in Ta-
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Table 1: Pseudocode for microbenchmark evaluating migration
overhead between two CPUs.

pin self to CPU 1
// Warm up cache
touch_cache()
// Measure cost with warm cache on CPU 1
start = current time
touch_cache()
stop = current time
t1 = stop - start
// Measure cost with cold cache on CPU 2
migrate to CPU 2
start = current time
touch_cache()
stop = current time
t2 = stop - start
// Difference is migration cost
migration cost = t2 - t1

ble 2). Among all threads, the benchmark defines thethread spread
to be (max − min)/max, wheremax and min are the maxi-
mum and minimum number of transactions a thread completes. If
each thread represents a different client, then a fair system should
deliver the same quality of service to every client. In otherwords,
each thread should ideally complete the same number of transac-
tions and the spread should be close to zero. Our results showthat,
with CFS, the spread can be as high as 13.3% when the number
of threads increases from 8 to 16. On the other hand, with DWRR,
the maximum spread was only 3.7%, demonstrating that DWRR
achieves much stronger fairness.

5.2 Performance

This section evaluates DWRR’s performance by showing that it
adds minimum overhead and enables performance similar to that
of unmodified Linux 2.6.24.

5.2.1 Migration Overhead

Compared to an existing scheduler, DWRR’s overhead mainly
comes from the extra thread migrations it might introduce. Mi-
gration overhead includes two components: the cost of moving a
thread from one CPU to another and the cost of refilling cacheson
the new CPU. Our experience [20] shows that the latter often domi-
nates and thus we focus on it. To evaluate cache refill costs, we con-
structed a microbenchmark. Table 1 shows its pseudocode, where
touch cache() accesses a memory buffer in a hard-to-predict
way and the buffer size, i.e., the working set of the benchmark,
is configurable. The benchmark callstouch cache() first to
warm up the cache, calls the function again and measures its run-
time t1. Then, it migrates to a different CPU, calls the function
once again, and measures its runtimet2 on the new CPU. The dif-
ference betweent1 andt2 indicates the cost of refilling the cache
and, consequently, the migration cost.

Figure 7 shows the migration costs for different working set
sizes. In one case, the two CPUs reside in different sockets with
separate caches; in the other case, they reside in the same socket
with a shared L2 cache. With separate caches, the migration cost
increases as the working set size increases, because it takes more
time to refill caches on the new CPU. However, the cost is bounded
by 1.8 ms and drops as the working set exceeds 4 MB, the L2
cache size in our system, because the benchmark incurs high cache
misses regardless of migration and the initial cache refill cost turns
into a negligible fraction of the total runtime. In the case of a
shared cache, since the benchmark only needs to refill the L1 after
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Figure 7: Migration cost for different working set sizes.

Table 2: Benchmarks.

UT2004: Unreal Tournament* 2004 is a single-threaded CPU-
intensive 3D game. We use its botmatch demo with 16 bots in
Assault mode on map AS-Convoy. We run 10 dummy threads
in background (each an infinite loop) to induce migrations and
expose DWRR’s overhead and use frame rate as the metric.

Kernbench: We use the parallel make benchmark, Kernbench
v0.30, to compile Linux 2.6.15.1 kernel source with 20 threads
(make -j 20) and measure the total runtime.

ApacheBench* : We use Apache 2.2.6 web server and itsab
program to simulate 1000 clients concurrently requesting an
8 KB document for a total of 200,000 requests. Our metric is
mean time per request as reported byab.

SPECjbb2005* : We use SPECjbb2005* V1.07 and BEA
JRockit* 6.0 JVM. Following the official run rule, we start with
one warehouse (thread) and stop at 16, and report the average
business operations per second (bops) from 8 to 16 warehouses.

migration, the migration cost decreases significantly to a maximum
of 5.2µs for the different working set sizes.

For both cases, the costs are far less than the typical quantum
length of tens or hundreds of milliseconds. As the multi-core trend
continues, we expect more designs with shared caches and thus low
migration costs. These results are also conservative; in practice, the
costs can be even smaller. As mentioned in Section 3.2.4, DWRR
incurs extra migrations only when there are more threads than
CPUs. In this case, a thread’s cache content is often alreadyevicted
by peers on the same CPU even if it does not migrate.

5.2.2 Overall Performance

Having discussed the individual cost of migrations, we now eval-
uate the overall performance of DWRR. Our goal is to show that
DWRR achieves similar performance to unmodified Linux, but
added advantage of better fairness. Table 2 describes our bench-
marks. UT2004 represents applications with strict latencyrequire-
ments, where any scheduling overhead can impact user experi-
ence (game scene rendering). Kernbench represents I/O workloads
where short-lived jobs come and go frequently. ApacheBench* rep-
resents I/O-intensive server workloads and SPECjbb2005* repre-
sents CPU- and memory-intensive server workloads.

Since UT2004 requires 3D graphics, we ran it on a dual-core
Intel® Pentium® 4 desktop with an ATI Radeon* X800XT graphics
card. We enabled Hyper-Threading; thus, our system has a total of
four logical CPUs. All other benchmarks were run on the aforemen-
tioned 8-CPU system. Since DWRR incurs most migration over-
head when there are more threads than CPUs and equal CPU weight
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Table 3: DWRR vs. Linux 2.6.24 performance results.
Benchmark Metric Linux DWRR Diff
UT2004 frames rate (fps) 79.8 79.8 0%
Kernbench runtime (s) 33.7 33 2%
ApacheBench time per request (s) 94.2 95.8 2%
SPECjbb2005 throughput (bops) 142360 141942 0.3%

distribution is unattainable, we modeled this behavior to maximally
expose DWRR’s performance problems. Table 2 shows how we
configure each benchmark. All threads have default weight one.
Table 3 shows our results for unmodified Linux 2.6.24 and thatex-
tended with DWRR. All of the benchmarks achieve nearly identical
performance under unmodified Linux and DWRR, demonstrating
that DWRR achieves high performance with low overhead.

6. Analytical Results
In this section, we show the invariants of DWRR and, based on
them, analyze formally its fairness properties.

6.1 Invariants

Let numThreads(p) denote the total number of threads inround-
activeandround-expiredof CPUp. DWRR maintains the follow-
ing invariants for any CPUp at any time.

Invariant 1. If numThreads(p) > 1, thenround(p) must equal
highest or highest − 1.

Proof. We prove by induction. For the base case, we show that the
invariant holds whennumThreads(p) > 1 is true for the first time
on any CPUp. This occurs whenp already has one thread inround-
activeor round-expiredand the scheduler dispatches one more to it.
The new thread can be either newly created, awakened, or one that
migrated from another CPU due to round balancing. In all cases,
DWRR ensures thatround(p) must behighest to receive the new
thread. Since we allow unsynchronized access tohighest, some
CPU could updatehighest after DWRR selectsp to receive the
new thread, but before it inserts the thread intop’s round-active. In
this case,round(p) equalshighest − 1 whennumThreads(p)
turns two, but the invariant still holds.

For the inductive hypothesis, we assumenumThreads(p) > 1
and round(p) is highest or highest − 1 at an arbitrary time.
We show that it continues to hold onwards. Consider the two
cases in whichhighest can change. First, according to Step 2
of round balancing, when CPUp advances to the next round, if
new round(p) > highest, then it updateshighest. Thus, the
new round(p) equalshighest and the invariant holds. Second, if
another CPU,p′, updateshighest beforep does, by the inductive
hypothesis,round(p) must behighest or highest − 1 beforep′

updateshighest. If round(p) is highest, then, afterp′ increments
highest, round(p) equalshighest − 1 and the invariant holds.
If round(p) is highest − 1, round balancing ensures that all but
the running thread onp migrate top′ beforep′ updateshighest.
Therefore, whenp′ updateshighest, numThreads(p) is one and
the invariant holds.

Invariant 2. If 0 < round(p) < highest − 1, then

(i) numThreads(p) = 1, and
(ii) w is infeasible, i.e.,w/W > 1/P , wherew is the weight of

the thread onp, W is the total weight of all runnable threads
in the system, andP is the total number of CPUs.

Proof. If numThreads(p) is zero,p is idle andround(p) must
be zero. IfnumThreads(p) > 1, by Invariant 1,round(p) ≥
highest − 1. Therefore, Invariant 2(i) holds.

For Invariant 2(ii), we show that ifw is feasible,round(p) ≥
highest − 1 must hold. By Invariant 2(i), there is only one thread
onp. LetT denote this thread andt be the time at whichT runs for
the first time on CPUp. To dispatchT to p, DWRR requires that
round(p) be highest at time t. Since we allow unsynchronized
access tohighest, similar to the argument for Invariant 1, the
actual value ofround(p) can behighest or highest − 1 at t.

We prove inductively that, after timet, wheneverhighest in-
crements, the up-to-date value ofround(p) must always equal
highest or highest − 1. Let th be the time at whichhighest in-
crements for the first time aftert andV be the total weight of all
threads in the system exceptT , i.e.,W = w + V .

For highest to increment atth, round balancing ensures that
all threads in the system have finished at least one round slice,
which takes the least amount of time when the total weight on each
CPU exceptp equalsV/(P − 1), i.e., the load is perfectly evenly
distributed to theP − 1 CPUs. Thus, we have

th ≥ t +
BV

P − 1
, (1)

whereB is the round slice unit as defined in Section 3.2.1.
Now, lettp denote the time at which DWRR updatesround(p)

for the first time after timet. SinceT is the only thread onp,
round(p) increments afterT finishes one round slice. Thus,tp =
t + wB. Sincew is feasible, by definition, we have

w

w + V
≤ 1

P
⇒ w ≤ V

P − 1
.

Therefore,

tp ≤ t +
BV

P − 1
. (2)

From (1) and (2), we have

tp ≤ th.

Thus, at timeth, whenhighest changes value tohighest + 1,
round(p) must have incremented at least once. Lethighest(t)
denote the value ofhighest at time t andround(p, t) the value
of round(p) at timet. We have

round(p, t) ≥ highest(t) − 1,

and

round(p, th) ≥ round(p, t) + 1.

Thus,

round(p, th) ≥ highest(t) = highest(th) − 1.

Therefore, ifw is feasible,round(p) >= highest− 1 holds at all
times, and hence Invariant 2(ii).

Given these invariants, we have the following corollary, which
is the basis for our lag analysis in the next section.

Corollary 1. Let i and j be two arbitrary threads with feasible
weights. Letm andm′ be the number of rounds they go through in
any interval[t1, t2] under DWRR. The following inequality holds:

|m − m′| ≤ 2.

Proof. Let h(t) denote the value ofhighest at timet. According to
Invariants 1 and 2, at timet1, i andj must be on CPUs with round
numberh(t1) or h(t1) − 1. Similarly, att2, their CPUs must have
round numberh(t2) or h(t2) − 1. Thus, we have

h(t2) − h(t1) − 1 ≤ m ≤ h(t2) − h(t1) + 1,

h(t2) − h(t1) − 1 ≤ m′ ≤ h(t2) − h(t1) + 1.

Therefore,−2 ≤ m − m′ ≤ 2.
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6.2 Fairness

This section establishes the lag bounds for DWRR. We focus on
fairness among threads with feasible weights because DWRR guar-
antees that threads with infeasible weights receive dedicated CPUs.
Let wmax be the maximum feasible weight of all runnable threads
in the interval[t1, t2], Φ be the set of runnable threads in[t1, t2], P
be the number of CPUs, andB be the round slice unit.

Lemma 1. Under DWRR, if any thread with a feasible weight
undergoesm rounds in the interval[t1, t2], then

(m − 2)B

P

X

i∈Φ

wi < t2 − t1 <
(m + 2)B

P

X

i∈Φ

wi.

Proof. We first consider the worst case (in terms of the thread’s
performance) in which the length of the interval[t1, t2] obtains
its maximum value. This occurs in the degenerate case when the
system hasP − 1 threads with infeasible weights. Thus, all threads
with feasible weights run on one CPU and, by Corollary 1, the
number of rounds they go through must differ fromm by at most
two. LetF denote this set of threads with feasible weights. For each
threadi ∈ F , the CPU time it receives in[t1, t2] satisfies

Si(t1, t2) ≤ (m + 2)wiB.

Since all threadsi ∈ F run on the same CPU and at least one goes
throughm rounds, we have

t2 − t1 =
X

i∈F

Si(t1, t2) < (m + 2)B
X

i∈F

wi. (3)

Since all threads inF have feasible weights, their total weight must
be feasible too. Thus

P

i∈F
wi

P

i∈Φ
wi

≤ 1

P
. (4)

Combining (3) and (4), we have

t2 − t1 <
(m + 2)B

P

X

i∈Φ

wi.

We now consider the best case in which the length of the interval
[t1, t2] has its minimum value. This occurs when the system has no
infeasible weights and the threads are perfectly balanced such that
the total weight of threads on each CPU equals(

P

i∈Φ
wi)/P . For

the thread that goes throughm rounds in[t1, t2], let p be the CPU
on which it runs andΩ be the set of threads on CPUp. Following
Corollary 1, we have

t2 − t1 >
X

i∈Ω

(m − 2)wiB =
(m − 2)B

P

X

i∈Φ

wi.

Therefore, the lemma holds.

From Lemma 1, we now show that DWRR has constant lag
bounds.

Theorem 1. Under DWRR, the lag of any threadi at any time
t ∈ [t1, t2] satisfies

−3wmaxB < lagi(t) < 2wmaxB,

where [t1, t2] is any interval in which threadi is continuously
runnable and has a fixed feasible weight.

Proof. Let m be the number of rounds that threadi goes through in
the interval[t1, t] under DWRR. The CPU time that threadi should
receive in[t1, t] under GPS is

Si,GPS(t1, t) =
wi

P

j∈Φ
wj

(t1 − t)P.

Applying Lemma 1, we have

(m − 2)wiB < Si,GPS(t1, t) < (m + 2)wiB. (5)

The CPU time that threadi receives in[t1, t] under DWRR satisfies

mwiB ≤ Si,DWRR(t1, t) < (m + 1)wiB. (6)

Based on (5) and (6), we have

−3wiB < Si,GPS(t1, t) − Si,DWRR(t1, t) < 2wiB.

Sincewi ≤ wmax, the theorem holds.

In practice, we expectwmax to be small (e.g., less than 100)
andB on the order of tens or hundreds of milliseconds. The smaller
B is, the stronger fairness DWRR provides, but potentially lesser
performance as round balancing would trigger more migrations.

7. Conclusion
Fairness is key to every OS scheduler. Previous scheduling algo-
rithms suffer from poor fairness, high overhead, or incompatibility
with existing scheduler policies. As the hardware industrycontin-
ues to push multi-core, it is essential for OSes to keep up with ac-
curate, efficient, and scalable fair scheduling designs. This paper
describes DWRR, a multiprocessor fair scheduling algorithm that
achieves these goals. DWRR integrates seamlessly with existing
schedulers using per-CPU run queues and presents a practical so-
lution for production OSes. We have evaluated DWRR experimen-
tally and analytically. Using a diverse set of workloads, our experi-
ments demonstrate that DWRR achieves accurate fairness andhigh
performance. Our formal analysis also proves that DWRR achieves
constant positive and negative lag bounds when the system limits
thread weights by a constant. In our future work, we plan to extend
the fairness model and DWRR to the scheduling of more types of
resources, such as caches, memory, and I/O devices.
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