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Abstract

Fairness is an essential requirement of any operatingraysthed-
uler. Unfortunately, existing fair scheduling algorithrae either
inaccurate or inefficient and non-scalable for multipreces. This
problem is becoming increasingly severe as the hardwaresind
continues to produce larger scale multi-core processdis Ja-
per present®istributed Weighted Round-Rob{DWRR), a new
scheduling algorithm that solves this problem. With distted
thread queues and small additional overhead to the undgrlyi
scheduler, DWRR achieves high efficiency and scalabiligsiBes
conventional priorities, DWRR enables users to specifyghsi to
threads and achieve accurate proportional CPU sharingowith
stant error bounds. DWRR operates in concert with existitga-
uler policies targeting other system attributes, such tenty and
throughput. As a result, it provides a practical solutionviarious
production OSes. To demonstrate the versatility of DWRRhaxe
implemented it in Linux kernels 2.6.22.15 and 2.6.24, whigpre-
sent two vastly different scheduler designs. Our evalnastiwows
that DWRR achieves accurate proportional fairness and pégh
formance for a diverse set of workloads.

Categories and Subject Descriptors  D.4.1 [Operating Systeniis
Process Management—Scheduling

General Terms Algorithms, Design, Experimentation, Perfor-
mance, Theory

Keywords Fair scheduling, distributed weighted round-robin,
multiprocessor, lag

1. Introduction

Proportional fair scheduling has long been studied in dpeya
systems, networking, and real-time systems. The convealtiap-
proach is to assign each task a weight and the scheduleresnsur
that each task receives service time proportional to itgktgR6].
Since perfect fairness requires infinitesimally small skchiag
quanta, which is infeasible, all practical schedulers axipnate
it with the goal of obtaining small error bounds.

Though well-defined, proportional fairness has not beeptdo
in most general-purpose OSes, such as Mag S&aris$, Windows,
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and Linux prior to version 2.6.23. These OSes adopt an imprecise
notion of fairness that seeks to prevent starvation and éastm-
ably” fair. In these designs, the scheduler dispatchestlsr the
order of thread priorities. For each thread, it assigns linead a
time slice (or quantum) that determines how long the thread c
run once dispatched. A higher-priority thread receivesgelatime
slice—how much larger is often determined empirically, agtro-
portional function of the thread’s priority. To facilitatairness, the
scheduler also dynamically adjusts priorities, for examply al-
lowing the priority of a thread to decay over time but boagtinif
the thread has not run for a while [12, 18]. Similar to timee$,
the parameters of these adjustments, such as the decaymate,
often empirically determined and are very heuristic.

The lack of precise definition and enforcement of fairness ca
lead to three problems. First, it can cause starvation ama po
/0 performance under high CPU load. As an example, we ran
32 CPU-intensive threads on a dual-core system with Windows
XP" and LinuxX kernel 2.6.22.15. In both cases, the windowing
system was quickly starved and non-responsive. Secondadke
of precise fairness can cause poor support for real-timkcapions
as proportional fair scheduling is the only known way to oatily
schedule periodic real-time tasks on multiprocessorsqL, Third,
it leads to inadequate support for server environments) sisc
data centers, which require accurate resource provigiokinlike
traditional data centers, which use discrete systems ve séents,
the trend of multi-core processors enables more servicdseto
consolidated onto a single server, saving floor space auottielsy.

In these environments, one multiprocessor system senviakiple
client applications with varying importance and qualifyservice
(QoS) requirements. The OS must be able to accurately d¢dhé&o
service time for each application.

Many proportional fair scheduling algorithms exist, buha®f
them provides a practical solution for large-scale muttigssors.
Most algorithms are inefficient and non-scalable due to seaf
global run queues. Accessing these global structuresregjaick-
ing to prevent data races, which can cause excessive satiati
and lock contention when the number of CPUs is high. Further-
more, writes to the global queues invalidate cache lineseshiay
other CPUs, which increases bus traffic and can lead to pager pe
formance. Algorithms based on per-CPU run queues resobseth
problems; however, all of the existing algorithms are eitheak
in fairness or slow for latency-sensitive applications.mdti-core
architectures continue to proliferate, the OS must keepitip ef-
ficient and scalable designs for fair scheduling.

This paper presenBistributed Weighted Round-RoiDWRR),

a new scheduling algorithm with the following features:

» Accurate fairness Using the Generalized Processor Sharing
(GPS) model [26], DWRR achieves accurate proportional fair



ness with constant error bounds, independent of the nunfber o Definition 2. In any given intervalti, 2], the weightw; of thread

threads and CPUs in the system.
* Efficient and scalable operationDWRR uses per-CPU run

queues and adds low overhead to an existing OS scheduler, eve

when threads dynamically arrive, depart, or change weights

* Flexible user control DWRR assigns a default weight to each
thread based on its priority and provides additional suipfoor
users to specify thread weights to control QoS.

* High performanceDWRR works in concert with existing sched-
uler policies targeting other system attributes, suchtesty and
throughput, and thus enables high performance as well as acc
rate fairness.

The remainder of this paper is organized as follows. Se&ion
discusses background and related work. Section 3 desdtilees
DWRR algorithm. We discuss our Linux implementation in Sec-
tion 4 and experimental results in Section 5, which show that
DWRR achieves accurate fairness with low overheads. Irn@egt
we present a formal analysis of DWRR'’s fairness properties a
prove that it achieves constant error bounds compared tiold¢la¢
ized GPS system with perfect fairness. We conclude in Seétio

2. Background on Fair Scheduling

Generalized Processor Shari{@®PS) is an idealized scheduling
algorithm that achieves perfect fairness. All practicdiestulers
approximate GPS and use it as a reference to measure fairness

2.1 The GPS Model

Consider a system witl® CPUs andN threads. Each thread
1 < i < N, has a weightv;. A scheduler is perfectly fair if (1)
it is work-conserving, i.e., it never leaves a CPU idle ifrthare
runnable threads, and (2) it allocates CPU time to threadsact
proportion to their weights. Such a scheduler is commorfigrred
to as Generalized Processor Sharing (GPS) [26].9:ét:,t2) be
the amount of CPU time that threadeceives in intervalt,, t2]. A
GPS scheduler is defined as follows [26].

Definition 1. A GPS scheduler is one for which
Si (t1, tz)
Sj(ti,t2) ~

holds for any thread that is continuously runnable if#1, t-] and
bothw; andw; are fixed in that interval.

(o

1,2,....,N

‘7
wj

From this definition, two properties of GPS follow:

Property 1. If both threads and;j are continuously runnable with
fixed weights irj¢1, t2], then GPS satisfies

Si(thtz)

Si(ti,t2)

Property 2. If the set of runnable thread®, and their weights
remain unchanged throughout the intenal, ¢2], then, for any
threadi € ®, GPS satisfies

Si(tl, tg) =

w;
wj

Wi
Y (ts—t)P.
Zje@ Wj

i is infeasible if

_wi 1

ZjECP w; ~ P’
where ® is the set of runnable threads that remain unchanged in
[t1,t2] and P is the number of CPUs.

An infeasible weight represents a resource demand thaedgce
the system capability. Chandra et al. [9] showed that, iP-a
CPU system, no more thaR — 1 threads can have infeasible
weights. They proposed converting infeasible weights tiigir
closest feasible ones. With this conversion, a GPS scheidulell-
defined for any multiprocessor system.

A GPS scheduler is idealized since, for Definition 1 to holl, a
runnable threads must run simultaneously and be schedutad w
infinitesimally small quanta, which is infeasible. Thud, @dac-
tical fair schedulers emulate GPS approximately and aréu-eva
ated from two aspects: fairness and time completipg is the
commonly-used metric for fairness [1]. Assume that threaalsd
j are both runnable and have a fixed weight in the intetyal].
Let S; a(t1,t2) andS; a(t1,t2) denote the CPU time thatand j
receive in[t1, t2] under some algorithrm.

Definition 3. For any interval[ti, ¢2], the lag of thread at time
t € [t1,t2]is

lagi(t) = Si,aps(ti,t) — Si a(t1,t).

A positive lag at time implies that the thread has received less
service than under GPS; a negative lag implies the oppd5ite.
fair scheduling algorithms seek to bound the positive arghtiee
lags—the smaller the bounds are, the fairer the algorithrAris
algorithm achieves strong fairness if its lags are boundeshtmall
constants. On the other hand, fairness is poor and nonkéeafa
the lag bounds are a@(N) function, whereN is the number of
threads, because the algorithm increasingly deviates G&8 as
the number of threads in the system increases.

2.2 Previous Work

Fair scheduling has its roots in operating systems, nefwgyland
real-time systems. Since the algorithms designed for opa are
often applicable to another, we survey prior designs in fithe
three areas and classify them into three categories.

2.2.1 Virtual-time-based Algorithms

These algorithms define a virtual time for each task or nekwor
packet. With careful design, they can achieve the strorfgestss
with constant lag bounds. The disadvantage is that theyaely
ordering tasks or packets and requdélog ) or, in some cases,
O(Nlog N) time, whereN is the number of tasks or network
flows. Strong fairness also often relies on the use of cénéiirun
queues, which limits efficiency and scalability of theseoalpms.
Next, we discuss some representative algorithms in thegoay.

In networking, Demers et al. [10] proposed Weighted-Fair
Queuing (WFQ) based on packet departure times for single-li
fair scheduling. Parekh and Gallager [26] showed that WFQ
achieves a constant positive lag bound BMV) negative lag
bound, whereV is the number of flows. WAR [3] improves WFQ
to achieve a constant bound for both positive and negatige la

Most prior research applied the GPS model to uniprocessor Blanquer andzden [4] extended WFQ and \¥® to multi-link

scheduling. For multiprocessors, some weight assignnuamdbe
infeasible and thus no GPS scheduler can exist [9]. For eleamp
consider a two-CPU system with two threads where= 1 and

wz = 10. Since a thread can run on only one CPU at a time, it is

scheduling. Other algorithms [13, 15, 16] use packet vVirduaval
times and have similar bounds to WFQ.

In real-time systems, previous algorithms [1, 2] obtained-c
stant lag bounds. Many studied adding real-time suppomtbel-

impossible for thread 2 to receive 10 times more CPU time than purpose OSes. Earliest Eligible Virtual Deadline First i) [31]

thread 1 unless the system is non-work-conserving. Chaetra
al. [9] introduced the following definition:

achieves constant positive and negative lag bounds, whd&ea
ased Virtual Finishing Time (BVFT) [24] obtains similar bals



to WFQ. For general-purpose OSes, Surplus Fair Scheduling
(SFS) [9], Borrowed-Virtual-Time (BVT) [11], Start-timealit
Queuing (SFQ) [14], and the Completely Fair Scheduler (GRS)
troduced in Linux 2.6.23 all have similar designs to WFQ angst
obtain a constant positive lag bound V') negative bound.

Many systems [19, 22, 30] use the Earliest Deadline FirsHED
or Rate Monotonic (RM) algorithm [21] to achieve fair schiedu
ing. The Eclipse OS [5] introduced Move-To-Rear List SchHiedyu
(MTR-LS). Though not using virtual time explicitly, thesége-
rithms are all similar to WFQ in principle and thus have sanlhg
bounds an®(log N) time complexity.

2.2.2 Round-robin Algorithms

These algorithms extend Weighted Round-Robin (WRR) [23],
which serves flows in round-robin order and transmits forheac
flow a number of packets proportional to its weight. Rounbimo
algorithms haveO(1) time complexity and thus are highly effi-
cient. However, they have weak fairness witl{V) lag bounds
in general. Nevertheless, if task or flow weights are bourted
a constant, a reasonable assumption in practice, they ¢éevac
constant positive and negative lag bounds. Thus, rounid-adgo-
rithms are perfect candidates for OSes to use to achievéeeffic
and scalable fair scheduling.

Unfortunately, most existing round-robin algorithms amn
scalable for multiprocessors because they use centradjuedes
or weight matrices, such as Group Ratio Round-Robin*G&,
Smoothed Round-Robin (SRR) [17], Virtual-Time Round-Robi
(VTRR) [25], and Deficit Round-Robin (DRR) [28]. To the best
of our knowledge, Grouped Distributed Queues (GDQ) [7] & th
only general-purpose OS scheduling algorithm except DRI t
achieves constant positive and negative lag bounds, areddise
tributed thread queues. However, GDQ requires signifidasatges
to an existing scheduler and thus does not provide a prhstba
tion. Since it is incompatible with existing OS schedulefigies,
such as dynamic priorities and load balancing, which opnfior
latency and throughput, GDQ can cause performance slowslown
In contrast, DWRR works in concert with these policies andins
high performance of the underlying scheduler.

2.2.3 Other Algorithms

Lottery scheduling [33] is a randomized algorithm with an ex
pected lag bound)(v/N) and worst-case boun®(N). Stride
scheduling [32] improves it to a deterministilog N) lag bound,
but still has weak fairness. Both algorithms have time caxipf
O(log N). Petrou et al. [27] extended lottery scheduling to obtain
faster response time, but did not improve its time compyeiit
general. Recently, Chandra and Shenoy [8] proposed Higcaic
Multiprocessor Scheduling (H-SMP) to support fair schadubf
groups of threads, which can be complementary to DWRR. H-SMP
consists of a space scheduler, which assigns integral msnabe
CPUs to thread groups, and an auxiliary scheduler, whick asg
previous fair scheduler to provision the residual CPU badtw

3. Distributed Weighted Round-Robin

This section gives an overview of DWRR, discusses its allgori
details, and illustrates its operation with an example.

3.1 Overview

DWRR works on top of an existing scheduler that uses per-QiRU r
queues, such as FreeBSB.2, LinuxX 2.6, Solaris 10, and Win-
dows Server2003. As its name suggests, DWRR is a distributed
version of WRR. The problem with WRR is that it requires a gllob
gueue to maintain round-robin ordering—in each round, thed-
uler scans the queue and schedules threads in the queueFader

round-activeround-expired

S
S

round-activeound-expired round-active round-expire

S

CPUO CPU1 CPUP-1

Figure 1. DWRR per-CPU thread queues. Curved lines represen
threadsround-activeand-expireduse the same data structures.

DWRR, we observe that, to achieve fairness, threads do reat ne
to run in the same order in each round—they can run in any order
any number of times, as long as their total runtime per rosnd i
proportional to their weights.

DWRR maintains aound numbeifor each CPU, initially zero.
For each thread, we define rsund sliceto bew - B, wherew is
the thread’s weight and® is a system-wide constarmpund slice
unit. A round in DWRR is the shortest time period during which
every thread in the system completes at least one of its relicel
The round slice of a thread determines the total CPU timetheat
thread is allowed to receive in each round. For example,hfeatd
has weight two and3 is 30 ms, then it can run at most 60 ms in
each round. The value @8 is an implementation choice. As we
show in Section 6, a smallds leads to stronger fairness but lower
performance, and vice versa.

When a thread uses up its round slice, we say that this thasad h
finished a round. Thus, DWRR removes it from the CPU run queue
to prevent it from running again. When all threads on this GRik
finished the current DWRR round, DWRR searches other CPUs for
threads that have not and move them over. If none is found, the
CPU increments its round number and allows all local thre¢ads
advance to the next round with a full round slice.

3.2 Algorithm

This section describes DWRR in detail. On each CPU, DWRR
performsround slicingto achieve local fairness; across CPUs, it
performsround balancingo achieve global fairness.

3.2.1 Round Slicing

Besides the existing run queue on each CPU, which weaatid-
active DWRR adds one more queueund-expired Though com-
monly referred to as a “queue” in scheduler nomenclatueeruh
queue can be implemented with any data structure. For exxampl
many OSes implement it as an array of lists, where each list co
responds to one priority and contains all threads at thatipyi
whereas the recent CFS in Linux implements it as a red-blaek t
Whatever the structure is, DWRR retains it in battund-active
andround-expired Figure 1 illustrates these data structures.

On each CPU, bothlound-activeand round-expiredare ini-
tially empty and the round number is zero. The schedulent®se
each runnable thread intound-activeand dispatches threads from
there, as it normally does. For all threadsdnnd-activethe CPU’s
round number defines the round in which they are running. DWRR
places no control over threads’ dispatching order. For gem
if the underlying scheduler dispatches threads based onitj@s,
DWRR retains that order. This feature is key to DWRR’s apilit
to keep similar fast response time to the underlying scteedok
latency-sensitive applications.

With any existing scheduler, a thread may run for a whileldyie
to another thread (e.g., due to quantum expiration), anchgam.
DWRR monitors each thread&imulativeruntime in each round.
Whenever it exceeds the thread’s round slice, DWRR preempts
the thread, removes it fromound-active and inserts intoound-



expired allin O(1) time, i.e., a small constant time independent of

the number of threads and CPUs in the system. Thus, at any time

DWRR maintains the invariant that if a CPU’s round number is
R, then all threads in iteound-activequeue are running in round
R and all threads imound-expiredhave finished round? and are
waiting to start roundR + 1. Next, we discuss when a CPU can
advance from roun®® to R + 1.

3.2.2 Round Balancing

To achieve fairness across CPUs, DWRR ensures that all GPUs i
the common case differ at most by one in their round numbers.
Section 6 describes this property precisely and proves himads

to strong fairness. Intuitively, this property enablesrfass because

it allows threads to go through the same number of rounds (i.e
run for the same number of their respective round sliceshin a
time interval. To enforce this property, whenever a CPU fiess

a round, i.e., itsound-activequeue becomes empty, it performs
round balancing to move over threads from other CPUs before
advancing to the next round.

To aid round balancing, DWRR keeps a global variablghest,
which tracks the highest round number among all CPUs at any
time. Section 3.2.4 addresses scalability issues with global
variable. Letround(p) be the round number of CPRl Whenever
p’s round-activeturns empty, DWRR performs round balancing as
follows:

Step 1: If round(p) equalshighest or p’s round-expireds empty,
then

DWRR scans other CPUs to identify threads in rouwidhest

or highest — 1 and currently not running (excluding those that
have finished roundvighest). These threads exist iround-
active of a roundhighest CPU or round-activeand round-
expiredof a roundhighest — 1 CPU.

If step i finds a non-zero number of threads, DWRR moges

of them toround-activeof p. The value ofX and from which
CPU(s) to move thes& threads affect only performance, not
fairness, and thus are left as an implementation choicee Not
that after allX threads finish their round slices pnp’s round-
activeturns empty again. Thus, it will repeat Step 1 and can
potentially move more threads over.

(iii) If step i finds no threads, then either no runnable tdeeexist
or they are all currently running, gois free to advance to the
next round. Thus, DWRR continues to step 2.

@)

(ii)

Step 2: If p’s round-activeis (still) empty, then

(i) DWRR switchesp’s round-activeand round-expired i.e., the
old round-expiredqueue becomes the neaund-activeand the
newround-expiredbecomes empty.

(ii) If the newround-activels empty, then either no runnable thread

exists or all runnable threads in the system are alreadyingnn
thus, DWRR setp to idle andround(p) to zero. Else, it
increments-ound(p) by one, which advances all local threads
to the next round, and updatesghest if the newround(p) is
greater.

Figure 2 summarizes this algorithm in a flowchart. These-oper
ations add little overhead to the underlying scheduleGesimost

Whenever CPU p’s
round-active is empty

round-expired
empty?

round(p) = highest?

round-active
still empty?

Scan other CPUs for
threads in round =
highest - 1

Switch round-active

round(p)++
and round-expired

No

New round-active

round(p) > highest?
empty?

Move X threads to
p’s round-active

Set p to idle and
round(p) to 0

highest = round(p)

!

l

End

Figure 2: Flowchart of DWRR’s round balancing algorithm.

the first roundhighest — 1 CPU, p,, it identifies, it moveq X/2]
threads fromp,'s round-expiredo p's round-active whereX is the
number of threads ip,’s round-expired Among all CPUs in round
highest or highest — 1, DWRR also finds the most loaded one
(counting only threads imund-activg, p,, where load is subject
to the definition of the underlying scheduler. It movesthreads
from p,’s round-activeto p’s round-active whereY is the number
of threads that, if moved tp, the load orp would equal the average
CPU load (i.e., total system load divided by the number of €PU

3.2.3 Dynamic Events and Infeasible Weights

Whenever the OS creates a thread or awakens an existing one,
DWRR locates the least loaded CPU among those that are either
idle or in roundhighest. It then inserts the thread intmund-
activeof the chosen CPU. If this CPU is idle, DWRR sets its round
number to the current value highest. A thread’s departure (when
it exits or goes to sleep) affects no other thread’s weighttans
requires no special handling in DWRR. If the user dynamycall
changes a thread’s weight, DWRR simply updates the thread’s
round slice based on its new weight.

A unique feature of DWRR is that it needs no weight adjustment
for infeasible weights, an expensive operation that regusorting
the weights of all threads in the system [9]. With DWRR, amg&ul

OSes already perform similar operations when a run queue iswith an infeasible weight may initially share a CPU with athe

empty. For example, Linix2.6, Solaris 10, and Windows Server
2003 all search other CPUs for threads to migrate to the g C
for load balancing. DWRR simply modifies that operation by-co
straining the set of CPUs from which threads can migrate. As a
proof-of-concept, we have modified Linux as follows.

Let p be a CPU whoseound-activeturns empty. When DWRR
scans other CPUs for threads in rounghest or highest — 1, for

threads. Since it has a larger weight, it remaingdand-active
when other threads on the same CPU have exhausted their round
slices and moved tmund-expired Once its CPU’s round number
falls belowhighest, round balancing will move threads faund-
expiredto other CPUs. Eventually, this thread becomes the only
one on its CPU, which is the best any design can do to fulfill an
infeasible weight.



round-activeound—-expired  round-activeound-expired Assume A, B, and C have weight one and round slice of one time unit.

Time 0: A and B start on CPU 0, C on CPU 1.
A C Time 1 (left): A and B each finish half a round and remain in round-active.
Time 0 C finishes one round and moves to round-expired.
B Time 1 (right): CPU 1 performs round balancing and moves B over.
Time 1.5 (left): A and B both finish one round and move to round—expired.
Time 1.5 (right): Both CPU 0 and 1 have nothing to do for round balancing
CPU O CPU1 So they switch round-active and —expired, and advance to next round.
Round 0 Round 0
round-activeound-expired  round-activeround-expired round-activeound—-expired  round-activeround—expired
. A A B
Time 1 =
B
CPUO CPU1 CPUO CPU 1
Round 0 Round O Round O Round 0
round-activeround-expired round-activeround-expired round-activeound-expired  round-activeound—expired
. A C
Time 1.5 =
B
CPUO CPU1 CPUO CPU1
Round 0 Round 0 Round 1 Round 1
Figure 3: Example of DWRR'’s operation.
3.2.4 Performance Considerations and round slice of one time unit. At time @, and B are inround-

activeof CPU 0 andC' in round-activeof CPU 1. At time 1, both
A and B have run half a time unit and has run one time unit.
Thus,C moves toround-expiredon CPU 1. Since itsound-active
becomes empty, CPU 1 performs round balancing and mBves
to its round-active but not A because it is currently running. At
time 1.5, bothA and B have run for one time unit, so they move
to round-expiredof their CPUs. Both CPUs then perform round
dbalancing, but find no thread to move. Thus, they switmind-

activeandround-expired and advance to round 1.

The global variabléiighest presents a synchronization challenge.
For example, suppose two CPU4, and B, are both in round
highest and each has one thread running. When a new thféad,
arrives, DWRR picksA as the least loaded CPU in rouhéghest
and assign§ to it. Suppose that, before DWRR inseftsnto A’s
round-active the thread orB finishes its round and moves #®'s
round-expired CPU B then performs round balancing, but finds
no thread to move over. Thus, it advances to the next round an
updateshighest. Now DWRR insertd” into A’s round-active but
A'is no longer in roundvighest.

A simple solution to this race is to use a lock to serialize .
round balancing and thread arrival handling, which, howevan 4. Implementation
seriously limit performance and scalability. Instead, werfd that DWRR can be easily integrated with an existing scheduleedbas
this race does no harm. First, it affects only thread placgme on per-CPU run queues. To demonstrate its versatility, we ha
not correctness. Second, as Section 6 shows, it does notimpa implemented DWRR in two Linux kernel versions: 2.6.22.18 an
fairness—DWRR achieves constant lag bounds regardless, Th  2.6.24. The former is the last version based on the so-chitetk

we allow unprotected accesshaghest with no special handling. O(1) scheduler and the latter is based on CFS. Our code is awilabl
Another concern is that DWRR could introduce more thread athttp://triosched. sourcef orge. net.

migrations and thus more cache misses. Our results in 8e&to In the O(1) scheduler, each CPU run queue consists of two

show that migrations on SMPs have negligible performangaon thread arraysactive and expired They collectively formround-

This is especially true when there are more threads than CPUs activein DWRR and we added a third array emind-expired In
which is when round balancing takes place, because a tBread’ CFS, each run queue is implemented as a red-black tree. We use
cache content is often evicted by peers on the same CPU eventhis tree agound-activeand added one more tree to actrasnd-
if it does not migrate. On the other hand, migrations can thpa expired In our Linux 2.6.22.15 implementation, we assign each
performance significantly on NUMA systems when threads atéggr ~ thread a default weight, equal to its time slice divided by $fys-
off their home memory nodes [20]. With DWRR, users can baanc tem’s default time slice (100 ms). Linux 2.6.24 alreadygssieach
between performance and fairness by tuning the round stite u thread a weight based on its static priority, So our impletatsm
B. A larger B value leads to less frequent migrations, but weaker retains this weight as default. In both implementations added
fairness, as we show in Section 6. a system call that allows the user to flexibly control the \ueiof
each thread by setting it to any arbitrary value.

The O(1) scheduler has poor fairness. CFS obtains accurate
Figure 3 shows a simple example of DWRR'’s operation. Assume fairness within a CPU, but unbounded lag across CPUs. Tasstipp
two CPUs and three threadd, B, andC, each with weight one fast response time, th®(1) scheduler uses heuristics to dynami-

3.3 Example



PID PR N %CPU TI ME+ COMVAND PID PR N %CPU TI ME+ COMVAND

3195 25 0 100 0:07.58 whilel 3218 25 0 81 0:05.24 whilel
3196 25 0 100 0:07.58 whilel 3211 25 0 80 0:05.24 whilel
3197 25 0 100 0:07.56 whilel 3215 25 0 80 0:05.24 whilel
3198 25 0 100 0:07.56 whilel 3214 25 0 80 0:05.22 whilel
3199 25 0 100 0:07.56 whilel 3216 25 0 80 0:05.22 whilel
3200 25 0 100 0:07.55 whilel 3217 25 0 80 0:05.23 whilel
3201 25 0 50 0:03.84 whilel 3219 25 0 80 0:05.22 whilel
3202 25 0 50 0:03.70 whilel 3210 25 0 80 0:05.22 whilel
3203 25 0 50 0:03.81 whilel 3212 25 0 80 0:05.22 whilel
3204 25 0 50 0:03.72 whilel 3213 25 0 80 0:05.22 whilel
(a) Linux 2.6.22.15. (b) 2.6.22.15 with DWRR.

PID PR N %PU TI ME+ COMVAND PID PR N %PU TI ME+ COMVAND
3983 20 0 90 0:07.90 whilel 3470 20 0 80 0:08.66 whilel
3985 20 0 85 0: 07.60 whilel 3473 20 0 80 0:08.66 whilel
3980 20 0 82 0: 07. 44 whilel 3475 20 0 80 0:08.66 whilel
3988 20 0 79 0: 07.00 whilel 3476 20 0 80 0:08.66 whilel
3987 20 0 79 0:07.54 whilel 3479 20 0 80 0:08.66 whilel
3979 20 0 78 0:07.38 whilel 3471 20 0 80 0:08.64 whilel
3981 20 0 78 0:07.10 whilel 3472 20 0 80 0:08.64 whilel
3984 20 0 78 0: 06.86 whilel 3474 20 0 80 0:08.66 whilel
3986 20 0 78 0: 07.70 whilel 3478 20 0 80 0:08.64 whilel
3982 20 0 73 0:07.08 whilel 3477 20 0 79 0:08.64 whilel

(c) Linux 2.6.24. (d) 2.6.24 with DWRR.
Figure 4: Snapshots ¢fop for 10 threads on 8 CPUs.
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Figure 5: Maximum lag and relative error for 16 threads on 8

CPUs. Five threads have nice one and others nice zero. Figure 6: Weighted fairness for four foreground threads.

cally adjust thread priorities, which, however, is ofteeffactive. consists of 16 threads, five at nice level one (low priorityd a
CFSis much better as itis able to bound thread waiting tidem- the rest nice zero (default priority). The benchmark runsZo

bining CFS and DWRR enabled us to obtain both accurate &8rne  minutes and samples the CPU time of each thread év&ggonds.
and high performance. Our implementation in Linux 2.6.8214es For each sampling interval, it computes the lag of the thifead

100 ms as the round slice unit and 2.6.24 uses 30 ms, whicheshow this time interval and its relative error, defined as lag didd by
to be a good balance between fairness and performance ixour e the ideal CPU time the thread would receive during this iraer
periments. Unless otherwise mentioned, our test system B-a  if under GPS. Figure 5 shows our results foequal to 5, 30, 60,
CPU server with two Int&l Xeor® X5355 quad-core processors. and 120 seconds. For a given sampling interval, each barsstinawv
maximum absolute lag value among all threads throughou2@he
minute run; above each bar is the maximum relative error. &ée s

5. Experimental Results that Linux 2.6.24 (based on CFS) has a large relative errdy @

We evaluate DWRR in terms of its fairness and performance. the sampling interval increases, its lag increases ligagith no

) bound. In contrast, lag under DWRR is bounded by 0.5 secands f
5.1 Fairness all sampling intervals. Thus, DWRR achieves much bettenésis.
Since fairness is trivial if the number of threads is a mistipf the To evaluate DWRR's fairness for different weights, we ramrfo

number of CPUs, we ran 10 threads on the 8-CPU system, each arfhreads of weights one, two, three, and four. Since our syste
infinite loop, and used op to monitor CPU allocation. Figure 4  has eight CPUs, we ran eight more threads of weight three in
shows Snapshots (Ifop for the two Linux versions with and baCkgrOUnd such that all WEIghtS are feasible. We ran for five
without DWRR. As we can see, the 2.6.22@51) scheduler has minutes and sampled the cumulative CPU time of each thread
poor fairness, 2.6.24 CFS improves it slightly, and botrsicers every five seconds. Figure 6 plots our results, which showrate
with DWRR achieve nearly perfect fairness. correlation between thread weights and CPU times.

Our next benchmark evaluates the lag of CFS and DWRR. The  Finally, we ran SPECjbb200%0 demonstrate DWRR's fairness
goal is to show that DWRR is fairer in more complex settings under realistic workload. The benchmark is multithreaddene

where threads have different priorities (weights). Thechemark each thread simulates a set of business transactionsl¢datda-



Table 1: Pseudocode for microbenchmark evaluating muagrati
overhead between two CPUs.

pin self to CPU 1

/1 Warm up cache

touch_cache()

/1 Measure cost with warm cache on CPU 1
start = current tine

touch_cache()

stop = current tine

tl = stop - start

/1 Measure cost with cold cache on CPU 2
mgrate to CPU 2

start = current tine

touch_cache()

stop = current tine

t2 = stop - start

/! Difference is migration cost
mgration cost =t2 - tl

ble 2). Among all threads, the benchmark defineshiead spread

to be (maz — min)/max, wheremaz and min are the maxi-
mum and minimum number of transactions a thread compldtes. |
each thread represents a different client, then a fair systeould
deliver the same quality of service to every client. In otiverds,
each thread should ideally complete the same number ofattans
tions and the spread should be close to zero. Our results tsladyw

with CFS, the spread can be as high as 13.3% when the number

of threads increases from 8 to 16. On the other hand, with DWRR
the maximum spread was only 3.7%, demonstrating that DWRR
achieves much stronger fairness.

5.2 Performance

This section evaluates DWRR'’s performance by showing that i
adds minimum overhead and enables performance similaato th
of unmodified Linux 2.6.24.

5.2.1 Migration Overhead

Compared to an existing scheduler, DWRR’s overhead mainly
comes from the extra thread migrations it might introducé: M
gration overhead includes two components: the cost of ngoain
thread from one CPU to another and the cost of refilling caches
the new CPU. Our experience [20] shows that the latter oftenid
nates and thus we focus on it. To evaluate cache refill costspw-
structed a microbenchmark. Table 1 shows its pseudocoderewh
t ouch_cache() accesses a memory buffer in a hard-to-predict
way and the buffer size, i.e., the working set of the benckmar
is configurable. The benchmark call®uch_cache() first to
warm up the cache, calls the function again and measuresnits r
time ¢;. Then, it migrates to a different CPU, calls the function
once again, and measures its runtimen the new CPU. The dif-
ference betweemn, andi. indicates the cost of refilling the cache
and, consequently, the migration cost.

Figure 7 shows the migration costs for different working set
sizes. In one case, the two CPUs reside in different sockgts w
separate caches; in the other case, they reside in the saket so
with a shared L2 cache. With separate caches, the migrabisin ¢
increases as the working set size increases, becausestrtake
time to refill caches on the new CPU. However, the cost is bednd
by 1.8 ms and drops as the working set exceeds 4 MB, the L2
cache size in our system, because the benchmark incursdmigke c
misses regardless of migration and the initial cache refét turns
into a negligible fraction of the total runtime. In the caseao
shared cache, since the benchmark only needs to refill thét¢rl a

—a— Separate cache —e— Shared cache
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Figure 7: Migration cost for different working set sizes.

Table 2: Benchmarks.

UT2004 Unreal Tournament2004 is a single-threaded CPU
intensive 3D game. We use its botmatch demo with 16 bots in
Assault mode on map AS-Convoy. We run 10 dummy threpds
in background (each an infinite loop) to induce migrationd an
expose DWRR’s overhead and use frame rate as the metri¢.

Kernbench: We use the parallel make benchmark, Kernbench
v0.30, to compile Linux 2.6.15.1 kernel source with 20 tlsea
(make -j 20) and measure the total runtime.

ApacheBench: We use Apache 2.2.6 web server andats
program to simulate 1000 clients concurrently requesting
8 KB document for a total of 200,000 requests. Our metri
mean time per request as reportechliy

SPECjbb2005: We use SPECjbb2005V1.07 and BEA
JRockit 6.0 JVM. Following the official run rule, we start with

one warehouse (thread) and stop at 16, and report the average
business operations per second (bops) from 8 to 16 wareholise

L is

migration, the migration cost decreases significantly taaimum
of 5.2 us for the different working set sizes.

For both cases, the costs are far less than the typical quantu
length of tens or hundreds of milliseconds. As the multiecmend
continues, we expect more designs with shared caches ambbthu
migration costs. These results are also conservativeaitipe, the
costs can be even smaller. As mentioned in Section 3.2.4, RWR
incurs extra migrations only when there are more threads tha
CPUs. In this case, a thread’s cache content is often al@acted
by peers on the same CPU even if it does not migrate.

5.2.2 Overall Performance

Having discussed the individual cost of migrations, we neal-e
uate the overall performance of DWRR. Our goal is to show that
DWRR achieves similar performance to unmodified Linux, but
added advantage of better fairness. Table 2 describes oghbe
marks. UT2004 represents applications with strict lateecyire-
ments, where any scheduling overhead can impact user experi
ence (game scene rendering). Kernbench represents 1/Qoadsk
where short-lived jobs come and go frequently. ApacheBeregr
resents 1/O-intensive server workloads and SPECjbb2085re-
sents CPU- and memory-intensive server workloads.

Since UT2004 requires 3D graphics, we ran it on a dual-core
Intel® Pentiun® 4 desktop with an ATI Raded’X800XT graphics
card. We enabled Hyper-Threading; thus, our system haslaatot
four logical CPUs. All other benchmarks were run on the afee-
tioned 8-CPU system. Since DWRR incurs most migration over-
head when there are more threads than CPUs and equal CPU weigh



Table 3: DWRR vs. Linux 2.6.24 performance results.

[ Benchmark | Metric | Linux | DWRR | Diff |
UT2004 frames rate (fps) 79.8 79.8 0%
Kernbench runtime (s) 33.7 33 2%
ApacheBench| time per request (s) 94.2 95.8 2%
SPEC|bb2005| throughput (bops) | 142360 | 141942 | 0.3%

distribution is unattainable, we modeled this behavior &ximally
expose DWRR’s performance problems. Table 2 shows how we
configure each benchmark. All threads have default weigkt on
Table 3 shows our results for unmodified Linux 2.6.24 and ¢lxat
tended with DWRR. All of the benchmarks achieve nearly ideht
performance under unmodified Linux and DWRR, demonstrating
that DWRR achieves high performance with low overhead.

6. Analytical Results

In this section, we show the invariants of DWRR and, based on
them, analyze formally its fairness properties.

6.1

Let numT hreads(p) denote the total number of threadsaund-
activeandround-expiredof CPU p. DWRR maintains the follow-
ing invariants for any CPy at any time.

Invariants

Invariant 1. If numT hreads(p) > 1, thenround(p) must equal
highest or highest — 1.

Proof. We prove by induction. For the base case, we show that the
invariant holds whemumT hreads(p) > 1is true for the first time
on any CPW. This occurs whep already has one threadiiound-
activeor round-expiredand the scheduler dispatches one more to it.
The new thread can be either newly created, awakened, ohahe t
migrated from another CPU due to round balancing. In all gase
DWRR ensures thatound(p) must behighest to receive the new
thread. Since we allow unsynchronized accesaitfhest, some
CPU could updatérighest after DWRR select to receive the
new thread, but before it inserts the thread ipitoround-active In
this caseround(p) equalshighest — 1 whennumT hreads(p)
turns two, but the invariant still holds.

For the inductive hypothesis, we assumenT hreads(p) > 1
and round(p) is highest or highest — 1 at an arbitrary time.
We show that it continues to hold onwards. Consider the two
cases in whichhighest can change. First, according to Step 2
of round balancing, when CPW advances to the next round, if
new round(p) > highest, then it updatesiighest. Thus, the
new round(p) equalshighest and the invariant holds. Second, if
another CPUp’, updateshighest beforep does, by the inductive
hypothesisyound(p) must behighest or highest — 1 beforep’
updateshighest. If round(p) is highest, then, aftep’ increments
highest, round(p) equalshighest — 1 and the invariant holds.
If round(p) is highest — 1, round balancing ensures that all but
the running thread op migrate top’ beforep’ updateshighest.
Therefore, whenp’ updateshighest, numThreads(p) is one and
the invariant holds. |

Invariant 2. If 0 < round(p) < highest — 1, then

(i) numThreads(p) =1, and

(i) w is infeasible, i.e.w/W > 1/P, wherew is the weight of
the thread orp, W is the total weight of all runnable threads
in the system, an® is the total number of CPUs.

Proof. If numThreads(p) is zero,p is idle andround(p) must
be zero. IfnumThreads(p) > 1, by Invariant 1,round(p) >
highest — 1. Therefore, Invariant 2(i) holds.

For Invariant 2(ii), we show that ifv is feasible;round(p) >
highest — 1 must hold. By Invariant 2(i), there is only one thread
onp. LetT denote this thread ariche the time at whicH’ runs for
the first time on CPLlp. To dispatchl’ to p, DWRR requires that
round(p) be highest at timet¢. Since we allow unsynchronized
access tohighest, similar to the argument for Invariant 1, the
actual value of-ound(p) can behighest or highest — 1 att.

We prove inductively that, after timg wheneverhighest in-
crements, the up-to-date value @bund(p) must always equal
highest or highest — 1. Let ¢}, be the time at whictkighest in-
crements for the first time aftérand V' be the total weight of all
threads in the system excepti.e., W =w + V.

For highest to increment at;, round balancing ensures that
all threads in the system have finished at least one round, slic
which takes the least amount of time when the total weightzmhe
CPU excepp equalsV/(P — 1), i.e., the load is perfectly evenly
distributed to theP — 1 CPUs. Thus, we have

BV
th, 2 t + P_ 17
whereB is the round slice unit as defined in Section 3.2.1.

Now, lett, denote the time at which DWRR updates:nd(p)
for the first time after time. SinceT is the only thread orp,
round(p) increments aftef” finishes one round slice. Thusg, =
t + wB. Sincew is feasible, by definition, we have

()

w 1
< = <
Tv=Sp_vs

w P—-1

Therefore,
BV

t, <t .
pStt oy

2
From (1) and (2), we have
tp < th.

Thus, at time,, whenhighest changes value thighest + 1,
round(p) must have incremented at least once. héghest(t)
denote the value alighest at timet andround(p,t) the value
of round(p) at timet. We have

round(p,t) > highest(t) — 1,
and
round(p,ty) > round(p,t) + 1.
Thus,
round(p,ty) > highest(t) = highest(tp) — 1.

Therefore, ifw is feasibleyound(p) >= highest — 1 holds at all
times, and hence Invariant 2(ii). |

Given these invariants, we have the following corollaryjckh
is the basis for our lag analysis in the next section.

Corollary 1. Leti and j be two arbitrary threads with feasible
weights. Letn andm' be the number of rounds they go through in
any interval[t1, t2] under DWRR. The following inequality holds:

|m —m/| < 2.
Proof. Let h(t) denote the value dfighest at timet. According to
Invariants 1 and 2, at timg, < and; must be on CPUs with round

numberh(t1) or h(t1) — 1. Similarly, atts, their CPUs must have
round numberh(t2) or h(t2) — 1. Thus, we have

h(ta) = h(t1) =1 < m < h(t2) = h(t1) +1,
h(t2) —h(t1) — 1< m' < h(tz2) — h(t1) + 1.
Therefore—2 < m —m’ < 2.



6.2 Fairness

This section establishes the lag bounds for DWRR. We focus on
fairness among threads with feasible weights because DWRR g
antees that threads with infeasible weights receive demticaPUs.

Let wmae be the maximum feasible weight of all runnable threads
in the intervalti, t2], ® be the set of runnable threadgjin, ¢2], P

be the number of CPUs, a8l be the round slice unit.

Lemma 1. Under DWRR, if any thread with a feasible weight
undergoesn rounds in the intervalt, t2], then

~2)B +2)B
%Zwi <yt < %Zwi_
i€P i€P

Proof. We first consider the worst case (in terms of the thread’s
performance) in which the length of the intenjal, ¢»] obtains

its maximum value. This occurs in the degenerate case when th
system had> — 1 threads with infeasible weights. Thus, all threads
with feasible weights run on one CPU and, by Corollary 1, the
number of rounds they go through must differ framby at most
two. Let F' denote this set of threads with feasible weights. For each
threadi € F, the CPU time it receives ift1, t2] satisfies

Si(t1, t2) < (m + 2)wiB.

Since all threads € F run on the same CPU and at least one goes
throughm rounds, we have

to —t1 = Zsi(thtg) < (m+ 2)BZwZ

i€EF i€ F

®)

Since all threads i have feasible weights, their total weight must
be feasible too. Thus

M < l (4)
ZiECP Wi p
Combining (3) and (4), we have
(m+2)B
t2 — t1 < T ZU)L

icd
We now consider the best case in which the length of the iaterv
[t1,t2] has its minimum value. This occurs when the system has no
infeasible weights and the threads are perfectly balangek that

the total weight of threads on each CPU equdl3,_,, wi)/P. For

the thread that goes through rounds in[t1, t2], letp be the CPU

on which it runs and? be the set of threads on CPiJFollowing
Corollary 1, we have

_(m-2)B
ty— 1 > iezﬂm ~oup= 28 Zw

Therefore, the lemma holds. O

From Lemma 1, we now show that DWRR has constant lag
bounds.

Theorem 1. Under DWRR, the lag of any threadat any time
t € [t1,t2] satisfies

—3WmazB < lagi(t) < 2Wmaa B,

where [t1, t2] is any interval in which thread is continuously
runnable and has a fixed feasible weight.

Proof. Letm be the number of rounds that threiagbes through in
the intervallt,, t] under DWRR. The CPU time that threashould
receive in[t1, t] under GPS is

w;

Zje@ Wi

(tr — t)P.

Si,aps(ti,t)

Applying Lemma 1, we have
(m — 2)wiB < Si,Gps(tl, t) < (m + 2)wiB. (5)
The CPU time that threaireceives irlt1, t] under DWRR satisfies

mw; B < S pwrr(ti,t) < (m+ 1)w;B. (6)
Based on (5) and (6), we have
—3w; B < Si,aps(ti,t) — Si,pwrr(t1,t) < 2w; B.
Sincew; < Wmaz, the theorem holds. O

In practice, we expecimq.. to be small (e.g., less than 100)
andB on the order of tens or hundreds of milliseconds. The smaller
B is, the stronger fairness DWRR provides, but potentialbsé
performance as round balancing would trigger more mignatio

7. Conclusion

Fairness is key to every OS scheduler. Previous schedulytg a
rithms suffer from poor fairness, high overhead, or incottyiley
with existing scheduler policies. As the hardware industgtin-
ues to push multi-core, it is essential for OSes to keep up agt
curate, efficient, and scalable fair scheduling designss paper
describes DWRR, a multiprocessor fair scheduling algorithat
achieves these goals. DWRR integrates seamlessly withirexis
schedulers using per-CPU run queues and presents a practica
lution for production OSes. We have evaluated DWRR experime
tally and analytically. Using a diverse set of workloads:, experi-
ments demonstrate that DWRR achieves accurate fairnedsgind
performance. Our formal analysis also proves that DWR Rexelsi
constant positive and negative lag bounds when the systeits i
thread weights by a constant. In our future work, we plan terek
the fairness model and DWRR to the scheduling of more types of
resources, such as caches, memory, and I/O devices.
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