Reducing L1 Caches Power By Exploiting Software Semantics *

Zhen Fang
NVIDIA Corp.

zfang@nvidia.com
Shih-lien Lu
Intel Labs, Intel Corp.
shih-lien.l.lu@intel.com

Li Zhao
Intel Labs, Intel Corp.

li.zhao@intel.com

Ravi lyer
Intel Labs, Intel Corp.
ravishankar.iyer@intel.com

Xiaowei Jiang
. InteI.L.alibs, Inte] Corp.
xiaowei.jiang@intel.com

Tong Li
Intel Arch. Group, Intel Corp.
tong.n.li@intel.com

Seung Eun Lee
Seoul National University of Science and Technology

seung.lee@seoultech.ac.kr

ABSTRACT

To access a set-associative L1 cache in a high-performance proces-
sor, all ways of the selected set are searched and fetched in parallel
using physical address bits. Such a cache is oblivious of memory
references’ software semantics such as stack-heap bifurcation of
the memory space, and user-kernel ring levels. This constitutes a
waste of energy since e.g., a user-mode instruction fetch will never
hit a cache block that contains kernel code. Similarly, a stack access
will not hit a cacheline that contains heap data.

We propose to exploit software semantics in cache design to

avoid unnecessary associative searches, thus reducing dynamic power

consumption. Specifically, we utilize virtual memory region prop-
erties to optimize the data cache and ring level information to op-
timize the instruction cache. Our design does not impact perfor-
mance, and incurs very small hardware cost. Simulations results
using SPEC CPU and SPECjapps indicate that the proposed de-
signs help to reduce cache block fetches from DL1 and IL1 by 27%
and 57% respectively, resulting in average savings of 15% of DL1
power and more than 30% of IL1 power compared to an aggres-
sively clock-gated baseline.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles

General Terms

Design, Power, Performance

Keywords

First-level cache, virtual memory, ring level, simulation

*This work was done when all authors were employed by Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISLPED’12, July 30-August 1, 2012, Redondo Beach, CA, USA.
Copyright 2012 ACM 978-1-4503-1249-3/12/07 ...$10.00.

1. BACKGROUND AND MOTIVATION

In a general-purpose processor, the first level cache is one of the
most critical units: it has to both meet performance requirement and
fit into the processor’s power envelope. Most of the architecture-
level power optimizations to caches have been designed for L2/1.3
caches where slightly lengthened hit latencies and/or decreased hit
rates are acceptable. However, these compromises are usually not
acceptable for the L1 cache in a high-performance processor. Some
of the power efficiency improvement techniques proposed for L1
caches [4, 6, 10] were adopted by earlier microprocessors. But
latest commercial processors (Intel Nehalem/Sandy Bridge/Atom,
IBM Power7[13], etc.), though more power-aware than before, have
abandoned those designs in the L1 cache due to the hardware com-
plexity they introduce and risks of lengthening the read hit cycle.

In this study, we take a novel approach to save the power con-
sumption of the set-associative L1 cache without lengthening its ac-
cess cycle or decreasing the hit rate. Specifically, we observe that a
significant portion of the parallel accesses to the data/tag stores are
unnecessary because many of the ways do not contain data whose
software semantics are compatible with the memory request. By
exploiting software semantics in the L1 cache design, we eliminate
these unnecessary activities. The benefit is reduced dynamic power
consumption in instruction fetches and data loads. The semantics
that we will be using are 1) virtual memory, and 2) privilege ring
levels.

Before we proceed to details of the proposed mechanism, we
provide background on L1 caches in high-performance processors,
as well as both software semantics.

Background on High-Performance L1 Caches

L1 caches in high-performance processors have been aggres-
sively optimized to achieve low latency for hits. Fig. 1 shows a
representative timing diagram of a read hit in a physically-tagged
set-associative L1 cache. Because the cache tags use physical ad-
dress bits, tag comparison cannot start until the TLB has completed
virtual-to-physical address translation. To meet the tight timing tar-
get, in an N-way set-associative LIC, all N data blocks of the se-
lected set are accessed in parallel, irrespective of the tag lookup
result. At least N-1 blocks will be discarded later, resulting in low
power efficiency. This is different than L2/L.3 or low-power caches
where tag check and data readout are serialized. L1 data and in-
struction caches of literally all modern general-purpose micropro-
cessors are implemented in this manner.

Bifurcation of the Virtual Memory Space
Figure 2(a) shows a representative virtual memory map. The bifur-

CLK N ways of data all fetched in paralle!

At least N-1 blocks will be discarded

Figure 1: Read Pipeline in a High-Performance L1 Cache

cation design implies that in the virtual address space, the most sig-
nificant bit (MSB) can differentiate stack and heap regions. How-
ever, this semantic is completely lost in the physical memory space,
due to the way that the operating system manages page frames.

Figure 2(b) shows that on average, about 40% of all data memory
references are accesses to the stack. The rest of the 60% consists
of accesses to the heap, BSS and data segments, with heap being
the dominant component. In the rest of the paper, we use the term
‘heap’ to refer to all three non-stack segments — heap, BSS and data.
Although the stack accounts for 40% of all memory instructions, on
average it only occupies 20% of the capacity on a 32KB, 8-way set-
associative L1 data cache (DL1), as a result of the stack’s relatively
small footprint[7].

OXFFFFFFFF "
KemelSpace | | ypperhaf 80%
0xC0000000 ™ Gzl of VM ‘nstackAccesses Count m Stack DalaOccupancy‘
i (MsB=1) 60% |- mmmimm===s e e e IS SIS .
0xB0000000
Shared Libs 40% -4 w i1l m /e -
T Lower 20% ﬂ‘} ‘_t ’-H_L "L
half of VM
Heap (MSB = 0) 0% n
BSS 3 3 £ 9 e a8 o T3 s B <
Dt gEFgse8sgeigEses 2
0x0 Code © a ES EE g a

(a) Linux Addr Map (b) Stack Access Count and Avg Occu-
pancy

Figure 2: Virtual Memory Map and Characteristics

Ring Levels and Instruction Cache Sharing

Ring level is a mechanism by which the operating system (OS) and
the processor hardware cooperate to restrict what user-mode pro-
grams can do. All mainstream processors use similar mechanisms.
For brevity, we base our discussion on the x86 architecture. When
a user (kernel) program executes, the processor is set to the least
(most) privileged level, ring 3 (ring 0). Rings 1 and 2 have been
largely unused except by virtualization layers. The processor’s cur-
rent ring level is stored in the 2-bit CPL field of the Code Segment
register.

User applications and the OS do not share code, but they share
the instruction cache. There has been a number of work studying
interaction of OS and microarchitecture[1, 9, 11]. They provide
data on overall instruction count and cache miss rates of kernel and
user codes, for example. One question remains unanswered — at
any given time, what percentage of the I-cache capacity is used by
kernel code?

One’s intuition would suggest that in compute-intensive appli-
cations the I-cache be constantly filled with user application code,
interfered only occasionally by kernel instructions brought in by
events like system calls. We found that this intuition is not cor-
rect. Figure 3 shows histograms of dynamic instruction counts and
occupancies of kernel-mode code in steady stages of two SPEC
CPU benchmarks on a 32KB, 8-way L1 instruction cache (IL1).
Each data point represents the average value in an interval of 25
Useconds. In each figure, we also give the algebraic mean values
of both bands of data averaged over the 3400 intervals. As can
be seen, although user code dominates instruction count, kernel in-
structions occupy a significant portion of the I-cache, clearly con-

tradicting one’s intuition. In equake, 76% of the cachelines actually
contain kernel code.

The phenomenon can be explained by the different characteris-
tics of kernel and user programs. User code usually spends the
majority of the time in nested loops, while the OS is more likely
to traverse non-iterative decision trees, occupying more I-cache
entries. The tight loops in user code such as SPEC CPU bench-
marks, on the other hand, have rather small static instruction mem-
ory sizes; user application execution tends to repeatedly fetch in-
struction from some hot ways of hot sets, which allows the (rarely
used) kernel code to stay for a long time before being evicted.

I-caches do not take advantage of ring level information. Though
a user-mode instruction fetch will never hit a cacheline that con-
tains kernel-mode code, all ways in the selected cache set are still
searched in parallel. For example, based on the profiling data of
equake in Figure 3, statistically about
(1-2%) x T16%0+2% x (1-76%)=T75% of all accesses to I-cache RAMs
will result in tag mismatches and fetched instruction blocks being
discarded. This observation motivates our optimization to the in-
struction cache.

100%

Cachelines w/ Kernel Code / All Cachelines

80% —+—Kernel Instr / Total Instr

J (b) equake ‘ w | |

K-instr occup = 16%

60%

1 401 801 1201 1601 2001 2401 2801 3201 1 401 801 1201 1601 2001 2401 2801 3201
Time (x 25 u-seconds) Time (x25 u-seconds)

Figure 3: Kernel Code’s Instr. Counts and Occupancies

2. TAGGING CACHELINES WITH SOFT-
WARE SEMANTICS

We propose to exploit software semantics in the cache design

to avoid unnecessary associative searches, thus reducing dynamic
power consumption. We present two software semantics-aware
cache designs, for the data cache and instruction cache, respec-
tively. In both designs, further search operations in the cache set
are continued only if the semantic tag comparison gives a match.
Vtag (1 bit per cacheline): Tag each L1 data cacheline with virtual
memory region information. Using the most significant bit of the
virtual address can help to eliminate all the cross-checks between
stack and heap data.
Rtag (2 bits per cacheline): Tag each L1 instruction cacheline
with ring level information, represented by the processor’s ring
level status bits when the instruction is fetched and cached. For
a user-level instruction fetch, this obviates the need to search the
ways that contain kernel-level code, and vice versa.

A key advantage of the semantic tag over the physical tag is that
the former can be checked concurrently with virtual-to-physical ad-
dress translation, avoiding performance impact typically seen in a
phased-access cache [6].

2.1 Augmenting DL1 with Vtags

Fig. 4 shows an implementation of a 32KB, 8-way L1 data cache
augmented by Vtag. Thick lines denote new logic that we propose
to add. The virtual page number is translated by the TLB to a phys-
ical page number, which will serve as the physical tag. When the N
(N=8 in our example) tags are fetched out of the tag store, they are

all compared with the incoming physical tag, and at most one com-
parison can be a hit. Data store accesses are performed in parallel
with the N tag store accesses.

From

bits of the processor while Vtag uses the highest order virtual ad-
dress bit of the incoming request. One would derive an implemen-
tation of Rtag-augmented IL1 from Vtag in DL1. Fig. 6(a) shows
how such a design can reduce accesses to the data store in a 4-way
set-associative instruction cache. In such a design, similar to the
Vtag case, we can not optimize IL1 tag array and ITLB accesses.

Ring-level vector of set i Ring-level vector of set i Bitmask of set i
[k T w T uw T «] [« Tuw T wv T« ilLol

current | | | current | | [
mode:uﬁ I3 4 1t |mode:u s O '\l wsl WSl wsl wsl
R A Bo|njps
Da'a Bmaskotseti | T Dala
e e e e

WS generated by the No Rtag comparison

—

AU [vPNMSBiZI | index{11:6] [ofisetisol |
MOB
< —
set
LB V-tag Tag Tag
PPN 3
¥ ! Y

data WL/BL
enable >

—

Way selects (WS)
generation is on critical
path of tag access.

LRU logic in the last
miss to the set.

Generation of the bitmask

after set selection

word ?m?

Figure 4: Eliminating Unnecessary DL1 Data Array Accesses
using Vtags. Selective data readout from the SRAM arrays is
realized by qualifying WL/BL operations with Vtag check re-
sults, eliminating unnecessary bitline discharges.

In a traditional cache, all N data subbanks have to be accessed. In
a Vtag-optimized cache, we implement selective data readout from
the SRAM arrays. To achieve this, we augment each cacheline
with the most significant bit of its virtual address. When a data
read arrives, Vtag check is performed in parallel with TLB access,
in addition to the regular physical tag check. Data subbank i (1 <
i < N)is accessed only if Vtag check = match for way i. The largest
components of cache power dissipation, bitline discharge and sense
amps ops, are eliminated for the Vtag mismatching ways. The Vtag
design does not require changes to cache hit assertation and does
not affect coherency protocols. Optimizing fag array accesses and
DTLB is challenging because of the tight timing constraints. So
regular physical tag check is performed regardless of whether Vtag
is a hit or a miss. Fig. 5(a) shows the optimized DL1 pipeline for a
read hit.

Using the example in Fig. 4, the Vtag logic consists of reading
from a 64-bit store for each of the N subbanks followed by 1-bit
XOR. We implemented the Vtag logic in 32nm CMOS technology.
It can be completed in well under 0.08 nanoseconds. This gives
enough time to propagate the way selection signals to the data store
since it is in parallel with TLB look up. This extra delay will fit into
the first phase of the clock even with frequency up to 4GHz.
Address Aliasing
Address aliasing refers to a special scenario in memory manage-
ment where two virtual pages point to a same physical page. With
respect to address aliasing, the Vtag mechanism does not change
the cache’s behavior except when a high virtual page and a low
virtual page are backed by a same physical page. False match
by Vtags will not occur since physical tag comparison is still per-
formed. False miss, however, could occur and cause program exe-
cution errors. Because creation of an aliased mapping is performed
by the OS memory manager, the OS can simply disable Vtag us-
age when such a mapping is created, and thus avoid false misses.
Since intentional address aliasing is rare in practice (unintentional
aliasing would indicate a bug in the OS), for the vast majority of
applications, the Vtag feature will not need to be disabled.

2.2 Augmenting IL1 with Rtags

Conceptually, instruction cache’s Rtag optimization is similar to
data cache’s Vtag optimization, except that Rtag uses the ring level

Usage of the bitmask

(a) Basic Implementation (b) Optimized Implementation

Figure 6: Using Rtags to Optimize ICache/ITLB Accesses

In Fig. 6(b), we present a better solution which removes ring-
level check from the critical path of IL1 and ITLB tag array ac-
cesses. We make an observation that dynamically generating ring
level match signals for every instruction fetch is not necessary, be-
cause these signals for a cache set do not change unless a cacheline
replacement occurs in the set, or if the ring level of the current
thread changes. We introduce a bitmask for each set, in addition
to the ring level Rtag vector. The bitmask directly serves as way
selection to enable/disable wordlines and bitlines. The left half of
Fig. 6(b) illustrates how a bitmask is generated, while the right half
shows how it is used. The bitmask generation and usage are de-
coupled. Compared with Fig. 6(a), the key difference is that Rtag
comparison is performed when a cacheline is installed, not when it
is looked up. When a cache set is selected by the indexing logic
for an IL1 read, its bitmask is ready to use, without the need for
Rtag comparison. In other words, the bitmask for each cache set is
generated before any read has been made to the set. Compared with
the basic implementation, in the decoupled mechanism, generation
of the bitmask is no longer on the critical path of tag array reads; it
is done in the cache miss handling process. When the processor’s
ring level changes, every bit in every bitmask is flipped.

With R ring levels in the processor, the total storage size for
ring levels and bitmasks is log(R) x w‘c‘;fe}l‘fiig’ifze bits and log(R) x
Number_of_entries bits for the I-cache and I-TLB, respectively.
Assuming R = 4, 32KB IL1, 64B/line, 128-entry ITLB, total stor-
age overhead is 1024 bits + 256 bits = 160 bytes. The power con-
sumption overhead of such a structure is minuscule compared with
the number of subbank accesses that we will be saving.

Fig. 5(b) shows the pipeline of an IL1 hit with Rtag masking
logic (the solid bars). The bitmask design allows us to place the
Rtag check logic before IL1 physical tag and ITLB VPN process-
ing, thus optimizing the power consumption of not only the data
arrays, but also the tag arrays.

A Quick Summary on the Designs

Table 1 summarizes the optimizations that we have discussed. In
DL1, Vtag uses a 1-bit XOR with the potential to eliminate a full
cacheline data fetch. In IL1, for the vast majority of instruction
fetches, Rtag uses a 1-bit way-selection mask with the potential to
eliminate both the tag comparison and the data array access. Our
Vtag and Rtag designs require no changes to cacheline replacement
logic, does not change cache hit/miss rates, and has no impact on
cache hit latency. The power consumption overhead of the new
logic is minuscule compared with the number of subbank accesses
that we will be saving. Being only a small extension to most L1

CLK

CLK:

phy tag
VA — hllt/mlss
g way_sel

Via A Data array |—>
chec \

reduced ways of
data accesses

(a) Data Cache

phy tag reduced ways of I-tag

<+ and I-TLB accesses, .
hit/miss

PC

Tag way_sel

H A Data array |—>
bitmask

reduced ways of
data accesses

(b) Instruction Cache and Instruction TLB

Figure 5: Pipelines of Vtag- and Rtag-Optimized L1 Caches

cache implementations in general-purpose CPUs, we believe that
the total cost of commercial processor adoption is low.

Table 1: Summary of cost and benefits. Storage overheads are
for the entire DL1/IL1 based on an Intel Nehalem-like proces-

sor.
Extra Bits Cache | Tag Array? | Data Array? | Overhead
Vtag: not
MSB of Virtual Addr | DL1 optimized optimized 64 bytes
Rtag:
Ring Level, Bitmask | IL1 optimized optimized 128 bytes

2.3 Qualitative Discussion on Power Savings

The effectiveness of the proposed optimizations primarily de-
pends on the overall selectivity of the semantic tags throughout the
application execution. For a cache access, selectivity is defined as
the number of semantic tag matches divided by the cache associa-
tivity. For example, if the Vtag of an incoming data read matches
the stored Vtags of 2 of the 8§ ways in the set, the selectivity is 25%
for this access. A lower selectivity value is desirable since more
unnecessary data array accesses would be eliminated.

For an access to a Vtag-optimized D-cache,

P_DLI = P_tag_data_lkg + P_dec + P_tag_dyn + selectivity x P_data_dyn + P_vtag_ovhd (a)
For an access to a Rtag-optimized |-cache and I-TLB,

P_IL] = P_tag_data_lkg + P_dec + selectivity x (P_tag_dyn + P_data_dyn) + P_rtag_ovhd (b)
When there is no access to DL1, IL1 or |-TLB,

P_idle = P_tag_data_lkg + residual_factor x (P_dec + P_tag_dyn + P_data_dyn) (c)

Figure 7: Power Consumption Components. selectivity is the
key parameter to be obtained through simulation.

Vtag and Rtag reduces power consumption of different struc-
tures, as is shown in Table 1. In an N-way set-associative array,
accessing M of the N ways consumes approximately M/N of the
baseline dynamic power by gating the clocks to the bitlines and seg-
mented wordlines of the rest N — M subarrays. When clock gated,
the cache power consists of a constant leakage power and some
residual dynamic power, given in Equation (c) in Fig. 7. Aggregat-
ing Equations (a), (b) and (c) for the whole application simulation
gives us the overall average power of DL1 or IL1.

3. EVALUATION
3.1 Simulation Methodology

We use a trace-driven, cycle-accurate platform simulator [16]
to model the performance aspect of the architecture. To estimate
power dissipation, we integrated microarchitecture-level power es-
timation tool, Wattch[3], into ManySim. We plugged in 45nm

CMOS technology parameters, obtained through MOSIS, into Wattch.

Leakage is assumed to be 20% of the overall baseline power for
L1 cache, and is not optimized by our design. We calculate en-
ergy consumption of the caches using the model in Section 2.3
on a cycle-by-cycle basis and integrate the numbers to derive the
average power. Table 2 shows the key simulation parameters. In
particular, the L1 cache parameters are representative of the latest
high-performance processors like Intel Nehalem and Sandy Bridge.

Application traces of SPEC CPU2000 and SPECjappsServer04
were collected using full-system emulator SoftSDV[14] running
Fedora 10. After skipping the warm-up phases, SoftSDV captured
all fetched instructions and dumped them into traces. These traces
faithfully contain the dynamic instruction sequence of all user and
kernel instructions. In most experiments, we run each trace for 1
billion instructions in a steady stage of the applications.

Table 2: Simulation setup. (Bold fonts denote default values.)
Parameter Value

3.2GHz, out-of-order

Processor core

L1 I-cache 32KB, 64B/line.
8-way and 4-way, LRU
L1 D-cache 32KB, 64B/line.

8-way and 4-way, LRU
TLB Data: 96 entries, 8-way
Instr: 64 entries, 8-way
64B/line, 8-way, 4MB, LRU
L1=3 cycles; L2=12 cycles.
DRAM=120ns

L2 cache
Latencies

3.2 Experiment Results: Vtag on DL1

We present the selectivity profiles of SPEC CPU, shown in Fig-
ure 8. The data are collected on an 8-way set-associative DL1
setup. In the figure, for each application, the four segments rep-
resent the percentages of different selectivity ranges. For exam-
ple, the *<75%’ segment of applu has a value of 28% (the yellow
portion), indicating that 28% of all L1 data cache reads’ Vtags hit
either 5 or 6 of the Vtags in their respective selected sets. On av-
erage, about 19% of memory accesses have <25% Vtag matches
in their respective cache sets, denoted by the bottom segment of
the Avg bar. For these memory reads, their Vtags match 0, 1, or 2
of the Vtags in their respective selected sets. This means that for
19% of all DL1 accesses, only up to two data subbanks need to
be activated on our 8-way cache. Because Vtag does not optimize
write instructions, all write instructions count as 100% match in the
statistics.

High match percentages are usually a result of unbalanced num-
bers of stack/heap accesses. For example, in mcf, stack reads only

100%

O<=25% MW<=50% 0O<=75% O<=100%

80% -

60% - -

40% +

20% -

Match number distribution

0% - T T T T

& SIS @R
K & TR ee&% &

. 52 O L
q’L\Q P @Q‘\ &L 6&\@ o

0{\ Q'Qk ?ﬁ%

NS
N &

Figure 8: Distribution of Vtag Selectivity in DL1. Lower selectivity implies bigger power savings.

| Rtag on IL1

100% 4{ @ Vtag on DLA

Eliminated

SRS PRSP ESTE®
S LS N
o IR

(a) Eliminated Cache Block Fetches

30%
c
O 25%
°
S 20% -
T
9150/0’
o 10%
H
S 5%
0%
2z seszgserg2ges g
3 2 5 E
g s Ewgt»c’m ggggs <
[}

(b) Power Reduction of DL1

Figure 9: Eliminated Cache Block Fetches in DL1 and IL1, and Power Reduction in DL1

account for 4% of all memory references, and most cachelines con-
tain heap data. Incoming heap reads will see their Vtag match most
of the Vtags in the selected sets, while incoming stack reads will
mostly have low selectivity. Since reads are now predominantly
heap accesses, the result is dominance of the <100% segment for
mcf. By contrast, 56% of apsi’s DL1 accesses are user stack reads.
User stack writes, user non-stack accesses and kernel data struc-
tures account for the rest, 44%. As a result, we observe a rather
good distribution for apsi.

Using equations discussed in Section 2.3, we estimate total DL1
power consumption for the benchmarks. Overall, Vtag is able to
eliminate 27% of all fetches from the DL1 data array for SPEC00,
shown in Fig. 9(a). Fig. 9(b) shows estimated power reduction per-
centages. On average 13% and 17% of total cache power is reduced
using Vtag on 4-way and 8-way L1 data caches for SPEC CPU.

3.3 Experiment Results: Rtag on IL1

@ <=25% B <=50% 0O <=75% 0O <=100%

100%

80% 4

60% + 41

40%

20%

Rtag match distribution

0%

> O XA & &
FS g ff}@&‘@ 4‘2/0@.’&9

&

Figure 10: Distribution of Rtag Selectivity in IL1

Selectivities of Rtag are presented in Fig. 10. Apparently, Rtag is
more effective on IL1 than Vtag is on DL1, indicated by the overall
lower selectivity values. A direct comparison of eliminated cache
structure accesses is shown in Fig. 9(a) where Rtag eliminates 57%

g 60% D4-way @ 8-way
S
S 40%
©
(]
T 20%
H
0%
P T IFFT LR RS LR eSS
£ & TFE G S EF CITTGF S L

Figure 11: Power Reduction of IL1 using Rtag

of all fetches from the IL1 tag and data arrays for SPEC00. As
a result, the relative power saving in the I-cache is even better
than Vtag’s effects on D-cache, shown in Fig. 11. For instance,
SPEC CPU average power reduction is over 30% in IL1 compared
to about 15% in DL1.

4. RELATED WORK

The most closely related bodies of work on the data cache are
Semantic-Aware Cache Partitioning and Way Prediction.
Semantic-Aware Partitioning (SAP) Lee [7] uses separate data
caches for different virtual memory regions. Hard partitioning the
L1 cache has two drawbacks. First, performance-wise the rigid
partitioning will inevitably lead to low utilization of the precious
L1 cache space. Second, virtual address aliasing would require
expensive mechanisms to resolve.

Way Prediction (WP) Some commercial processors, including Pen-
tium4 and UltraSPARC-III, use so-called microtag to achieve vir-
tual address (VA) bits based way prediction [12], in order to re-
duce L1 cache power. The lower section of the tag (‘loTag’) is first
checked and the hit way data is speculatively fetched. The remain-
ing bits (‘hiTag’) are also checked to determine if the access was a
true hit. To enforce uniqueness with loTags of all the ways in each
set, if an incoming block has the same loTag bits as a block in the

O SAP O WP-1b B WP-2b & WP-3b

~
c & 1%
s 9
S o
T ®©
S =
i
Qe
]
- .

Qo

8

Figure 12: Performance Impact of Semantic Aware Partitioning and VA Based Way Prediction

set, the latter has to be evicted. Premature evictions impact caching
efficacy. One solution is to use more bits for loTag. But using more
bits for loTag can add extra delay to L1 hits. In fact, our gate-level
simulation in a 32nm, 3.0Ghz process revealed that 2-bit check can
be finished early enough to control the wordline and bitline of the
SRAM without adding an extra clock cycle, while loTag of 3 bits
or more cannot.

Fig. 12 presents the performance of SAP and WP when com-
pared to the baseline (Vtag and conventional cache). WP-xb de-
notes way prediction with a loTag of x bits. For SAP, the best per-
forming partition(§KB for stack and 24KB for heap) causes per-
formance loss as high as 15%, with an average of 1.2%. WP-1b,
WP-2b and WP-3b use the lowest 1, 2, and 3 bits of the virtual
page number as the way prediction source. Fig. 12 shows that con-
ventional VA-based way predictions introduce perceivable perfor-
mance loss. The IPC degradations of WP-1b and WP-2b, on av-
erage 4.2% and 1.9% respectively, have been caused by premature
eviction of cachelines. The performance loss of 6.8% with WP-3b
is primarily due to the extra clock cycle of read hits.

Besides SAP and WP, researchers[5, 8] designed specialized stack
caches to exploit software semantics for performance or power. A
phased-access cache[6] serializes tag check and data RAM aess,
improving power efficiency at the cost of longer cache hit latency.
Predictive way access is first used in the L2 cache in MIPS R10000
[15]. More complex mechanisms usually use a non-trivially sized
prediction table to help to speculate on the way that is more likely to
match an incoming request. Various prediction sources have been
tried including the program counter (RSA [2]) and register num-
bers (PSA [4]). The fundamental difference than our work is that
predictive way access is speculative in nature. Mispredictions re-
sult in longer hit latencies and also consume more of the valuable
L1 cache read bandwidth due to additional lookups. In order to get
satisfactory prediction accuracy, these methods have to introduce
fairly high hardware complexity. For an 8KB, 32B/block cache,
RSA would need about 2K bytes of storage for prediction [2], while
PSA uses a 1024-entry table [4]. Extra storage for Vtag is only 256
bits for such a cache.

Compared with the large body of work dedicated to the data
cache, the instruction cache in general-purpose CPUs is a relatively
less explored area. On user/kernel instruction mix side, as we have
discussed in Section 1, researchers presented detailed information
that helps on design issues such as I-cache size and associativity
[1,9, 11]. However, these studies provide little insight on how user
code and kernel code divide the I-cache capacity. To the best of our
knowledge, this is the first published study that reveals the high oc-
cupancies of kernel-mode codes in the instruction cache, and also
the first work that exploits user/kernel modes information to opti-
mize the instruction cache.

S. SUMMARY AND FUTURE WORK

In this paper we present design and evaluation of software semantics-

aware L1 caches. Our design is transparent to application software
and is performance-neutral. A significant percentage of cache array
accesses is eliminated, resulting in an average of over 15% and 30%
power savings in L1 data and instruction caches. Overall, we be-
lieve that the cost to incorporate the optimizations into commercial
products is low, with great power saving capabilities for literally all
applications on a high-performance processor.

6. REFERENCES

[1] L. A. Barroso et al. Memory system characterization of
commercial workloads. In ISCA-25, 1998.

[2] B. Batson and T. N. Vijaykumar. Reactive-associative
caches. In PACT, 2001.

[3] D. Brooks, , V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In ISCA-27, 2000.

[4] B. Calder, D. Grunwald, and J. Emer. Predictive sequential

associative cache. In HPCA, 1996.

M. Huang et al. L1d cache decomposition for energy

efficiency. In ISLPED, 2001.

[6] R. Kessler et al. Inexpensive implementations of

set-associativity. In ISCA, 1989.

H. Lee and C. S. Ballapuram. Energy efficient D-TLB and

D-cache using semantic-aware partitioning. In ISLPED,

2003.

H. Lee et al. Stack value file: Custom microarchitecture for

the stack. In HPCA, 2001.

T. Li et al. Understanding and improving operating system

effects in control flow prediction. In ASPLOS, 2002.

[10] M. D. Powell et al. Reducing cache energy via
way-prediction and selective direct-mapping. In MICRO,
2001.

[11] J. A. Redstone et al. An analysis of operating system
behavior on SMT architecture. In ASPLOS, 2000.

[12] G. W. Shen and C. Nelson. MicroTag for reducing power in a
processor, US Patent 7117290, 2006.

[13] B. Sinharoy. POWER?7 multi-core processor design. In
MICRO-42, 2009.

[14] R. Uhlig et al. SoftSDV: A presilicon software development
environment for the IA-64 architecture. Intel Technology
Journal, 3(4), Nov. 1999.

[15] K. C. Yeager. The MIPS R10000 processor. IEEE Micro,
16(2), 1996.

[16] L. Zhao et al. Exploring large-scale CMP architecture using
ManySim. IEEE Micro, 27(4):21-33, Apr. 2007.

[5

—

[7

—

(8

—_—

[9

—

