Appears in the Proceedings of the 15th Symposium on Parallelism in Algorithms and Architectures
San Diego, CA, June 7-9, 2003

Quantifying Instruction Criticality for
Shared Memory Multiprocessors

Tong Li and Alvin R. Lebeck
Department of Computer Science
Duke University
Durham, NC 27708, USA

{tongli,alvy}@cs.duke.edu

ABSTRACT

Recent research on processor microarchitecture suggests using
instruction criticality as a metric to guide hardware control
policies. Fields et al. [3, 4] have proposed a directed acyclic graph
(DAG) model for characterizing program microexecutions on
uniprocessors. Under such a model, critical path analysis can be
applied and instructions’ slack values can be used to quantify
instruction criticality. In this paper, we extend the uniprocessor
DAG model to characterize parallel program executions on shared
memory multiprocessor systems. We describe how critical path
analysis can be applied, at a fine grain, in a multiprocessor system
running both finite and continuous workloads. We provide detailed
evaluations for various aspects of multiprocessor executions under
the DAG model. To enable efficient offline critical path analysis,
we propose a novel graph reduction technique that reduces a DAG
to an equivalent but significantly smaller DAG.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)

General Terms
Algorithms, Measurement, Performance, Design

Keywords

Shared memory multiprocessors, critical path analysis, slack

1. INTRODUCTION

Computer hardware frequently makes decisions about how to
manage its resources. For example, dynamically scheduled
(a.k.a., out-of-order) superscalar microprocessors must decide
how to schedule instructions and how to share resources (e.g.,
functional units or fetch bandwidth) among them. Until
recently, microprocessors considered all instructions to have
equal effect on performance, and they employed
microarchitectural control policies (e.g., instruction issue
policy) based on simple priority functions (e.g., oldest-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SPAA’03, June 7-9, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-661-7/03/0006...$5.00.

Daniel J. Sorin
Department of Electrical and Computer Engineering
Duke University
Durham, NC 27708, USA

sorin@ee.duke.edu

instruction-first). Recent research [3, 4, 12, 13, 14] advocates
designing policies based on the criticality of dynamic
instructions with respect to overall program performance. To
quantify the criticality of dynamic instructions, Fields et al. [3,
4] propose a directed acyclic graph (DAG) model for
characterizing the fine-grain microexecution of a sequential
program. With this model, they can perform critical path
analysis and quantify instruction criticality by using a dynamic
instruction’s global slack value, where global slack is the
amount the hardware can delay an instruction without
lengthening the critical path of the execution. While prior
research has demonstrated that instruction criticality is an
effective metric for uniprocessors, this paper is the first
research to extend the fine-grain criticality model and analysis
to shared memory multiprocessors.

Criticality-based control policies require that the hardware
evaluate instruction criticality—either on a per-instruction
basis or aggregated over intervals—on the fly and make
decisions accordingly during program execution. Provided that
such capabilities are available, the following list shows some
potential advantages of criticality-based policies in a
multiprocessor system.

* Resource utilization. Resources (e.g., caches, memory
bandwidth, network bandwidth) can be better utilized by
prioritizing allocations and accesses based on instruction
criticality.

* Power efficiency. Processors executing less critical
instructions can run more slowly, thus saving power
without sacrificing performance.

* Misspeculation reduction. Selectively applying
speculation techniques based on instruction criticality can
reduce the number of misspeculations. For instance, using
coherence prediction to accelerate less critical
instructions does not help improve overall performance
even if the prediction is correct.

* Dynamic scheduling. Multiprocessor systems typically
perform dynamic scheduling at the task level to obtain an
efficient schedule. With instruction criticality, it is
possible to incorporate such fine-grain information with
the scheduling algorithm to achieve a better schedule.

Before we can achieve these benefits of criticality-based
policies, we must first extend the fine-grain uniprocessor DAG
model and critical path analysis to multiprocessors.
Specifically, we focus on modeling parallel program
executions on shared-memory multiprocessor systems. We
explore the graph properties of the resulting multiprocessor
DAGs using offline analysis of traces of program executions.
Previous multiprocessor DAG models represented programs at
a coarse grain, such that each node in a DAG represented a

task [8, 9] or a procedure [6, 7, 16]. In our fine-grain model, as
in prior microprocessor work, each node represents the
microexecution of an instruction. We seek to provide insights
into the fine-grain instruction-level = modeling of
multiprocessor executions, so that we can exploit instruction
criticality in system policies.

The remainder of this paper is organized as follows. In
Section 2, we describe a general DAG model for program
execution. Section 3 shows how to apply the model to
represent uniprocessor executions and how we extend it to
shared memory multiprocessors. Section 4 formalizes the
definitions of local and global slack and presents an algorithm
for computing them. The offline approach of our analysis
requires significant storage space for keeping dynamic
information during program executions. To ease this problem,
we develop a graph reduction technique in Section 5. The
graph reduction removes certain nodes and edges from a DAG
without affecting the critical path and slack computation. In
Section 6, we present experimental results on global slack
distribution and show how the critical path spans across
processors in a system. We then evaluate design decisions,
such as the effects of different cache coherence protocols, and
we present results on the effectiveness of the DAG reduction
technique. We discuss related work in Section 7 and conclude
in Section 8.

2. ADAG MODEL FOR EXECUTION

We can model the execution of a program with a directed
acyclic graph (DAG), in which each node represents a dynamic
event of the program and each edge represents a dependence
between its source and sink nodes. In this model, a dynamic
event is a general term that can represent any event in the
program’s execution (e.g., fetching an instruction, the
execution of an entire instruction, or execution of a coarse-
grain task). A dependence edge models the precedence
constraints dictated by the program’s semantics (e.g., data
dependence) or the underlying hardware (e.g., resource
dependence). Each edge is weighted by the time required to
resolve the corresponding dependence during the execution.
For an edge ¢ = (4, v), we say that e arrives at node v with
arrival time ¢, where ¢ is the time that the corresponding
dependence is resolved. The arrival time of an edge is the real
time during program execution (i.e., arrival times increase
monotonically as the execution progresses). Among all edges
arriving at v, we call the one that arrives last the last-arriving
edge [4]. There can be more than one last-arriving edge when
multiple edges arrive simultaneously.

A critical path of a DAG is a longest weighted path in the
DAG. The events on a critical path determine the overall
runtime of the program. If an edge e = (1, v) is on a DAG’s
critical path, an important property is that e must be a last-
arriving edge sinking on node v. Conversely, if an edge is not a
last-arriving edge to its sink node, it must not be on a critical
path. Note that a node with multiple last-arriving edges may
possibly lead the DAG to have multiple critical paths.” For the
purposes of our critical path analysis, we do not explicitly
label each edge with its weight; instead, we label each edge
with the time that it arrives at the sink node. Figure 1 shows a
simple DAG with its critical path highlighted.

! For brevity of terminology, we will refer without loss of
generality to the critical path as encompassing these potentially
multiple critical paths.

Figure 1. A simple DAG with critical path highlighted.

The slack of an event is a measure of how long its start time
can be delayed without affecting subsequent events. To
distinguish types of slack, Fields et al. [3] introduce the
concepts of local and global slack. In the DAG model, the
local slack of a node is the maximum time the start of the
corresponding event can be delayed without delaying any
event in the descendent nodes.? The global slack of a node is
the maximum time the start of the event can be delayed
without extending the DAG’s critical path. By definition,
instructions on the critical path have both local and global
slack of zero.

3. MAPPING DAGS TO SYSTEMS

In this section, we discuss how to map the DAG model to
specific hardware systems.

3.1 Uniprocessor Systems

Fields et al. [3, 4] model the execution of a single-threaded
sequential program on a dynamically scheduled superscalar
processor. In their DAG model, a node represents one of three
events: instruction dispatch, execute, and commit. Each event
corresponds to a stage in an instruction’s microexecution. An
edge represents one of seven types of dependences.

(1) In-order dispatch: Instructions must be dispatched in the
order in which they appear in the program.

(2) Finite reorder buffer: When the reorder buffer is full, an
instruction can be dispatched to it only after another
instruction commits and frees an entry.

(3) Control dependence: The correct target instruction of a
mis-predicted branch cannot be dispatched until the
branch is resolved.

(4) Execution follows dispatch: An instruction cannot execute
until it has been dispatched.

2 Node u is a descendent of v if there exists a path from u to v.

(5) Data dependence: An instruction cannot execute until the
instructions producing its operands finish.

(6) Commit follows execution: An instruction cannot commit
until it has finished execution.

(7) In-order commit: Instructions must be committed in the
order in which they appear in the program.

Types (1) and (7) collectively model the program order
dependence required by the program's sequential semantics.
The other dependence types reflect microarchitectural
constraints that exist in most dynamically scheduled
microprocessors.

3.2 Multiprocessor Systems

We extend the uniprocessor DAG model to parallel programs
on shared memory multiprocessors. We first construct
uniprocessor DAGs for each processor in the system, and then
we add edges between them that correspond to inter-processor
communication. Unlike prior work, to simplify the exposition,
we consider multiprocessor systems with simple in-order
processors (i.e., instructions dispatch, execute, and commit all
in the order specified by the program). Since program order
dictates the ordering of all dynamic instruction events, each
node in our model represents an entire instruction (i.e., we do
not split it into dispatch, execute, and commit). Within each
processor, we maintain the program order dependence of its
dynamic instructions. The only difference introduced by a
dynamically scheduled processor model is the mapping of
events and dependences to nodes and edges; the critical path
analysis is the same.

In our model, a program order dependence edge connects an
instruction to the instruction that immediately follows it in
program order. The program order dependence resolves when
the following instruction is issued to a functional unit for
execution. Therefore, by the definition of the DAG model, we
label a program order dependence edge with the issue time of
the following instruction.

Processors communicate with each other only via loads and
stores to shared memory. Between instructions on different
processors, true data dependence governs their ordering for the
correctness of the program. Thus the other type of dependence
we model, which does not exist in the uniprocessor model, is
the read-after-write (RAW) dependence. A RAW dependence
occurs between a store that produces a value and a load that
consumes the value. When the store and load are on the same
processor, the RAW edge connecting them models a normal
data dependence as in the uniprocessor model. When the store
and load are on different processors, the RAW edge models a
communication between the two processors. A RAW
dependence resolves when the store finishes. Therefore, we
label a RAW edge with the store’s completion time.

Since we model only two types of dependences, a node in our
DAG model has at most two incoming edges: a program order
edge and a RAW edge. Only load nodes have incoming RAW
edges and only store nodes have outgoing RAW edges.
Figure 2 shows an example DAG for a multiprocessor system
with 1its critical path highlighted. Unlabeled nodes are
instructions that are neither loads nor stores.

Processor 3

Processor 2

Processor 1

Figure 2. A multiprocessor DAG (critical path highlighted).

4. COMPUTING SLACK

In this section, we formally define local and global slack with
respect to nodes and edges in a DAG (Section 4.1). We then
present our algorithm for computing the global slack of all the
nodes in a DAG (Section 4.2). While our algorithm computes
the global slack, it can also determine the critical path of the
DAG. Finally, we discuss how we apply the algorithm
differently to finite and continuous workloads (Section 4.3).

4.1 Definitions

We use the global slack of an instruction to quantify its
criticality. To compute global slack in a DAG, we use the same
definitions developed by Fields et al. [3]. We present them
again here in order to later explain our algorithm and reduction
methodology.

Definition 1. The /ocal slack of an edge e = (u, v), denoted by
L(e), is the time that the latency of e can be increased without
delaying the sink node v.

We compute L(e) as the difference between the arrival time of
the last-arriving edge sinking on node v and the arrival time of
e. If e is last-arriving, L(e) = 0.

Definition 2. The local slack of a node u, denoted by L(u), is
the maximum time u can be delayed without delaying any of
its descendent nodes.

We compute L(u#) as the smallest local slack among the
outgoing edges of u, i.e., L(1) = min/(L(e;)), where e; is the ith
outgoing edge of node u.

Definition 3. The global slack of an edge e = (u, v), denoted by
G(e), is the time that the latency of e can be increased without
extending the critical path.

We compute G(e) as L(e) + min,(G(o;)), where o; is the ith
outgoing edge of the sink node v.

G(u)

L(ey) L(e,)
L(ey)
G(vy) G(»p) G(vy)

Figure 3. Computing the global slack of node u.

Definition 4. The global slack of a node u, denoted by G(u), is
the maximum time u can be delayed without extending the
critical path of the DAG.

We compute G(u) as the smallest global slack among the
outgoing edges of u, i.e., G(u) = min,(G(e;)), where e; is the ith
outgoing edge of node u.

Given these definitions, we can derive G(u) from u’s outgoing
edges and the global slack of their sink nodes.

Let u be a node, e; = (1, v;) be the ith outgoing edge of node u,
and o;; be the jth outgoing edge of sink node v;, We have

G(u)

mlin(G(ei))

= min(L(e;) +min(G(0,))))
! (EQ 1)

mlin(L(el.) +G(v))).

We illustrate this computation in Figure 3, and we note that it
lends itself to an algorithm that starts at the end of execution
and proceeds backwards in time.

4.2 Algorithm for Computing Global Slack

Equation 1 shows a recursive way to compute the global slack
of all nodes in a DAG. We now define the base case for the
recursion. We define the endpoint node of a DAG as the last
finished node (instruction) among all the nodes in the DAG.
When there are multiple last finished nodes (because they
finish at the same time on different processors), we choose an
arbitrary node among them to be the endpoint node. We
initialize the global slack of the endpoint node to zero. If a
non-endpoint node has no descendents (i.e., it has no outgoing
edges) in the DAG, we initialize its global slack to be the
difference between its finish time and the finish time of the
endpoint node.

During program execution, we store information about its
instructions so that we can construct the DAG for offline
processing. Algorithm 1 shows how we compute the global
slack for all the nodes in a DAG. Since instructions on the
critical path have global slack of zero, we can determine the
critical path by backtracing the DAG from its endpoint node.
On the backtrace, all nodes with global slack of zero constitute
the critical path. Our algorithm does not assume any special

Algorithm 1: Computing global slack for all nodes.
if u is the endpoint node then
Gu)=0
else if has no outgoing edges then
G(u) = finish_time(endpoint) - finish_time(u)
else
G(u) = undefined
end if
Sort all nodes in reverse topological order
for all nodes u in the sorted order do
if G(u) = undefined then
min_global_slack = infinity
for all of u’s outgoing edges e; = (u, v;) do
compute L(e;)
if L(e;) + G(v;) < min_global_slack then
min_global_slack = L(e;) + G(v;)
end if
end for
G(u) = min_global_slack
end if
end for

properties of a DAG; therefore we can apply it directly to
DAGs modeling dynamically scheduled processors.

4.3 Finite vs. Continuous Workloads

A finite workload, such as a scientific application, executes a
finite number of instructions, so we can construct a DAG for
all its dynamic instructions that has a well-defined endpoint.
However, a continuous workload, such as a web server or
database, executes continuously and thus does not have a well-
defined endpoint. Nevertheless, given a large interval of
execution, we can pick the last finished node within the
interval from an arbitrary processor and consider it to be the
endpoint. We construct a DAG that includes only the finite
number of instructions that directly or transitively lead to the
endpoint node via program order and/or RAW dependence
edges. If a DAG node has an outgoing dependence edge to a
node outside the DAG, we do not include this edge in the
DAG. Unlike DAGs for finite workloads, in which non-
endpoint nodes can have no outgoing edges, the endpoint node
in a continuous workload DAG is the only node that has no
outgoing edges. A DAG constructed in this way allows us to
apply our algorithm to a finite subset of the infinitely many
instructions in a continuous workload, and it enables control
policies to apply optimizations to these instructions without
increasing their overall runtime. Randomly choosing the
endpoint node from all the processors affects the individual
instruction slack values computed by the algorithm.
Nevertheless, as shown in Section 6.2, the endpoint choice has
negligible impact on the overall slack distribution among the
instructions. This result suggests that we can design more
sophisticated control policies based on aggregated slack values
over an interval.

Reduction

—-

arrival time = ¢

Yoroto
o

arrival time = ¢

()

Figure 4. Illustration for Theorem 1.

5. GRAPH REDUCTION

The algorithm described in the previous section assumes that
we have enough information to construct the DAG for a given
program’s execution. In our model, a DAG contains nodes
representing all dynamic instructions, which can be a large
amount of information to store. For example, the sizes of our
workloads running with eight processors are all on the order of
billions of instructions. Though not infeasible, it is certainly
non-scalable and time-consuming to store and process such a
large amount of information. To ease this problem, we
developed a reduction technique that reduces a DAG to a much
smaller one without changing its critical path and slack
properties. The reduction exploits the observation that many
nodes and edges are not “useful” for computing the critical
path of the DAG or the global slack of any node in the DAG,
and thus they can be removed from the DAG.

Definition 5. DAG 4 is equivalent to DAG B if an algorithm
can derive from A the critical path of B and the global slack of
each node in B.

There are three cases in which the reduction can be applied.
We describe them as three theorems and show proofs for their
correctness.

Theorem 1. Let v and v, be two nodes on the same processor,
and let p = (vg, vy, ..., V4.1, V) be the path connecting them via
only program order edges. If all the intermediate nodes on p
(i.e., nodes vy, ... , v;_1) have neither incoming nor outgoing
RAW edges, then we can reduce the DAG to an equivalent
DAG by removing all the intermediate nodes and connecting
vo and v directly with an edge labeled with the same arrival
time as that of the original program order edge sinking on v;.

Proof. Figure 4 shows the situation described by the theorem.
Let v; and v; be two arbitrary intermediate nodes on the path p,
and let e be the program order edge connecting them. Since e is
the only outgoing edge from v;, by Equation 1, G(v;) = L(e) +

G(v)). Since e is the only edge sinking on v;, by definition, L(e)
= 0. Therefore, G(v;) = G(v)). Let e’ be the program order edge
connecting nodes v;_j and v;. Inductively, we have

G(v)) = G(vy) = ... = G(v;_) = L)+ G(v).

Since we compute L(e’) by using the arrival times of the edges
sinking on v, and we compute G(v;) by using v;’s outgoing
edges and descendent nodes, which are all retained in the
reduced DAG, we can correctly derive the global slack of
nodes vy, ..., v;_1 if they are removed.

We can also derive the critical path from the reduced DAG. If
the removed nodes are on the critical path of the original DAG,
then v; must be on the critical path and e’ must be a last-
arriving edge to v;. Since the arrival time of e’ is retained in
the reduced graph, we must find that both v and v, are on the
critical path in the reduced DAG, and from this we can derive
that all the removed intermediate nodes must also be on the
critical path in the original DAG. Conversely, if the removed
nodes are not on the critical path of the original DAG, then we
know either v, is not on the critical path of the original DAG,
or, if it is, e’ must not be a last-arriving edge to v;. For either
case, we must not find in the reduced DAG that both v and v,
appear on the critical path at the same time. Therefore we can
derive that the removed nodes are not on the critical path of the
original DAG. [0

Since only load and store nodes have RAW edges, by
Theorem 1, we can remove all the other nodes without
changing the critical path and slack information. We retain,
however, all the nodes that do not have outgoing edges since
they are part of the base case of our algorithm.4 Other than
these nodes, with the reduction, a DAG now contains only load
and store nodes and the edges connecting them.

Definition 6. Given a DAG G, a RAW edge ¢ = (1, v) is
dominated if removing it from G produces a DAG that is
equivalent to G.

The rest of the reduction is based on the observation that many
RAW edges are dominated and thus can be removed from the
DAG. The following lemma states the conditions for a RAW
edge to be dominated.

Lemma 1. Given a DAG G, a RAW edge ¢ = (1, v) is
dominated if it does not contribute to the computation of any
of the following values:

(i) the critical path of G,
(i) the global slack of node u, and
(iii) the local slack of the program order edge into node v.

Proof. Since the RAW edge e does not contribute to the
computation of the critical path of G, removing it from G does
not change the critical path.

Let e’ = (w, v) be the program order edge sinking on v. By
definition, the RAW edge e is only useful for computing the
global slack of # and w, and e affects G(w) only if it
contributes to the computation of L(e’). Given the conditions

3 Depending on how the slack information is to be used, we may
optionally store in v; the number of nodes that are removed so
we can accurately derive how many nodes were present in the
original DAG.

In a continuous workload, the chosen endpoint node is the only
node that does not have outgoing edges.

Figure 5. Illustration for Theorem 2.

in the lemma, removing e does not change the global slack of
any node in the DAG.

Therefore, removing e from G produces a DAG that is
equivalent to G. By definition, the edge e is dominated. [J

Given Lemma 1, we can prove two sufficient conditions for a
RAW edge to be dominated. The first condition considers the
case in which a store has two consuming loads that are
performed by the same processor.

Theorem 2. A RAW edge e = (u, v) is dominated if there exists
another edge e’ = (u, w) such that

(i) nodes w and v are on the same processor;
(ii) node w appears before v in program order;

(iii) the arrival time of e is less than that of the program order
edge sinking on v; and

(iv) no node between w and v is the sink of a RAW edge
whose arrival time is greater than that of the program
order edge sinking on that node.

Proof. Figure 5 shows the situation described by the theorem.
Dashed lines are program order edges and solid lines are RAW
edges. Let p,, and p, denote the program order edges sinking
on w and v, respectively.

To show that edge e is dominated, we prove that e does not
contribute to the computation of any of the three values listed
in Lemma 1.

First, by condition (iii), p, is the last-arriving edge to the node
v. Therefore edge e must not be on the critical path, i.e.,
removing e does not affect the computation of the critical path.

Second, since p, is the last-arriving edge to v, by definition,
the local slack of p,, L(p,), is zero. Thus, removing e does not
affect the computation of L(p,).

Third, we prove that e does not contribute to the computation
of the global slack of node u. Consider the path from w to v.
Let ny, ... , n; be the intermediate nodes on the path. From
condition (iv), we know that for every intermediate node, its
incoming program order edge is the last-arriving edge, which
has local slack zero. Therefore, we have G(w) < G(n;) < ... <
G(ny) £ G(v).

Figure 6. Illustration for Theorem 3.

Now consider the global slack of u. We have G(u) = min(L(e)
+ G(v), L(e’) + G(w)). Edges e and e’ have the same arrival
time at their corresponding sink nodes (both edges are labeled
with node u’s completion time), and because w is earlier than v
in program order, the arrival time of p,, is less than that of p,,
Therefore L(e’) < L(e). Since we know that G(w) < G(v), we
have G(u) = L(e’) + G(w). Therefore, removing e does not
affect the computation of the global slack of u. [

The first three conditions in Theorem 2 describe a situation
that occurs frequently in a program. A value stored by an
instruction is read repeatedly by later loads on the same or
different processor after the store has already finished. Thus, if
the last condition in the theorem is also satisfied, we can
remove all such later RAW edges (except the first one) from
the DAG.

Theorem 2 considers the situation in which a sequence of
RAW edges can be removed except for the first one in the
sequence. In the following theorem, we consider a situation in
which the RAW edge of the first instruction that loads a value
can be removed.

Theorem 3. A RAW edge e = (1, v) is dominated if
(i) nodes u and v are on the same processor;

(i) the arrival time of e is less than that of the program order
edge sinking on v; and

(iii) no node between « and v is the sink of a RAW edge whose
arrival time is greater than that of the program order edge
sinking on that node.

Proof. Figure 6 shows the situation described by the theorem.
Conditions (i) and (ii) ensure that e does not contribute to the
computation of the critical path and the local slack of the
program order edge sinking on v.

Let e’ be the program order edge out of « and let w be the sink
node of e’. From Condition (iii), we know that e’ is the last-
arriving edge to w. Thus we have L(e’) = 0 < L(e). Similar to
Theorem 2, Condition (iii) also ensures that G(w) < G(v).
Therefore G(u) = min(L(e) + G(v), L(e’) + G(w)) = L(e’) +
G(w). This proves that e does not contribute to the computation
of the global slack of u. O

Conditions (i) and (ii) in Theorem 3 describe the frequent
situation in which a store writes a value and has already
finished by the time a later load is issued to read the value.

The three theorems described in this section allow us to reduce
a DAG to an equivalent but much smaller DAG. Moreover, we
can apply these theorems repeatedly. For example, after
removing the RAW edges by Theorems 2 and 3, we may
further reduce the DAG by applying Theorem 1. In Section 6,
we evaluate the effectiveness of the reduction. These reduction
theorems were derived for systems with in-order processors.
DAGs for dynamically scheduled processor models may
require different graph reduction theorems.

6. EXPERIMENTAL RESULTS

In this section, we describe our simulation methodology and
present detailed evaluations for various aspects of program
executions under our multiprocessor DAG model.

6.1 Methodology

We simulate a multiprocessor target system with the Simics
full-system, multiprocessor, functional simulator [10], and we
extend Simics with a memory hierarchy simulator to compute
execution times. Each node in our system consists of a
processor, two levels of cache, some portion of the shared
memory, and a network interface.

Simics. Simics is a system-level architectural simulator
developed by Virtutech AB. We use Simics/sun4u, which
simulates Sun Microsystems’ SPARC V9 platform architecture
(e.g., used for Sun E6000s) in sufficient detail to boot
unmodified Solaris 8. Simics is a functional simulator only,
and it assumes that each instruction takes one cycle to execute
(although I/O may take longer), but it provides an interface to
support detailed memory hierarchy simulation.

Processor Model. We use Simics to model a processor core
that, given a perfect memory system, would execute four
billion instructions per second and generate blocking requests
to the cache hierarchy and beyond. We use this simple
processor model to enable tractable simulation times for full-
system simulation of commercial workloads. Our critical path
analysis, however, applies to any processor model. The only

Table 1. Target system parameters.

L1 Cache (I and D) 128 KB, 4-way set associative
L2 Cache 4 MB, 4-way set-associative
Memory 2 GB, 64 byte blocks

Miss From Memory 180 ns (uncontended)
Network tree, link b/w = 6.4 GB/sec

changes required for a dynamically scheduled processor model
involve the mapping of events and dependences to the DAG.

Memory Model. We have implemented a memory hierarchy
simulator that supports a MOSI broadcast snooping cache
coherence protocol. The simulator captures all state transitions
(including transient states) of our coherence protocol in the
cache and memory controllers. Our memory model is
sequential consistency and we model the interconnection
network and the contention within it. In Table 1, we present
the design parameters of our target memory system.

Workloads. We evaluate our system with the four continuous
commercial applications of the Wisconsin Commercial
Workload Suite [1] and two finite scientific applications.
These workloads are described briefly in Table 2 and in more
detail by Alameldeen et al. [1].

Data Collection. Our simulator assigns a sequence number to
each dynamic instruction when the instruction is issued for
execution. The sequence number is a unique, monotonically
increasing integer across all instructions on the same
processor. A (processor ID, sequence number) pair thus
uniquely identifies an instruction in the system. During
execution, the simulator tracks instruction dependences and
stores them in a file. Each line of the file contains information
that uniquely identifies an edge in the program’s DAG. For
each edge, we store the (processor ID, sequence number) pair,
the issue time, and the completion time of both its source and
sink nodes. We store only RAW edges, since we can derive
program order edges by the sequence numbers of the nodes
stored in the file. To ensure that we store only necessary

Table 2. Workloads: Wisconsin Commercial Workload Suite [1] and two SPLASH-2 benchmarks.

OLTP: Our OLTP workload is based on the TPC-C v3.0 benchmark using IBM’s DB2 v7.2 EEE database management system. We use
a 1 GB 10-warehouse database stored on five raw disks and an additional dedicated database log disk. There are eight simulated users
per processor. We warm up for 10,000 transactions, and we run for 500 transactions.

Java Server: SPECjbb2000 is a server-side java benchmark that models a three-tier system with driver threads. We used Sun’s HotSpot
1.4.0 Server JVM. Our experiments use 24 threads and 24 warehouses (~500 MB of data). We warm up for 100,000 transactions, and
we run for 50,000 transactions.

Static Web Server: We use Apache 1.3.19 (ww apache. or g) for SPARC/Solaris 8, configured to use pthread locks and minimal
logging as the web server. We use SURGE to generate web requests. We use a repository of 2,000 files (totalling ~50 MB). There are
ten simulated users per processor. We warm up for ~80,000 requests, and we run for 5,000 requests.

Dynamic Web Server: Slashcode is based on a dynamic web message posting system used by S| ashdot . com We use Slashcode 2.0,
Apache 1.3.20, and Apache’s nbd_per| 1.25 module for the web server. MySQL 3.23.39 is the database engine. The database is a
snapshot of S| ashcode. con) and it contains ~3,000 messages. A multithreaded driver simulates browsing and posting behavior for
three users per processor. We warm up for 240 transactions, and we run for 50 transactions.

Scientific Applications: We use two benchmarks from the SPLASH-2 suite [15]. We use barnes-hut with the 64K body input set and
ocean with the 514x514 input size. For both, we measure from the start of the parallel phase to avoid measuring thread forking.

oltp

0.12]
8 Processors
2
5 0.1 -
8 x
% 008 -
g%
5D
g8 % I
82 0041 -
w2
2 002 5
0 T L S S e A S I T T
1 10 100 1000 10000 100000
GlobalSlack + 1

Figure 7. Multiprocessor slack distribution.

oltp
0.6 —
2 Processors
g o051 -
B x
Sx 04
~ 044 L
Zw
e
5% 0.31 -
22 02 -
% =
g 0.1 -
0““/\‘7'*”“']“‘*,[“““““‘
1 10 100 1000 10000 100000
GlobalSlack + 1
0.3
0.25 -
[}
£ 024
S
5 0.15 1 M ocean
c Oslash
k]
g 0.1
[T
0.05 -
0 -
0 1 2 3 4 5 6 7

Processor ID

Figure 8. Fraction of critical path’s time on each processor.

information, the simulator dynamically checks whether it can
apply a graph reduction.

6.2 Results

In this section, we present our results on global slack
distribution and how the critical path spans across the
processors in a system. We then evaluate how different cache
coherence protocols and the endpoint choice in a continuous
workload affect the slack distribution. Finally we show results
on the effectiveness of the graph reduction.

Slack Distribution. In Figure 7, we plot the probability density
function (PDF) of global slack for 2-processor and 8-processor
OLTP workloads. The x-axis is global slack plus one shown in
log scale, so as to provide more resolution for small values and
allow the x-axis to represent zero global slack in log scale. The
y-axis is the fraction of instructions that have the given global
slack value specified by the x-axis. We observe that most
instructions have global slack less than 100 ns. There are,
however, spikes in the distributions between 100 and 200 ns,
which correspond to the latency of inter-processor
communication. The spike for the 4-processor workload (not
shown) lies between these two. The results for the other
workloads are similar.

Critical Path Time Breakdown. The breakdown of the critical
path’s time on each processor provides insight into the relative
criticality of the processors. In Figure 8, we show the fraction
of the critical path’s time spent on each processor in an 8-

processor system. We plot our results only for ocean and
sl ash; for the other workloads, the critical path is almost
evenly distributed with a maximum 7% variation across all the
processors. These critical path time breakdowns closely
correspond with the L2 cache miss rates on the processors,
since a processor with a larger L2 cache miss rate incurs more
communication to remote memories, thus taking a higher
fraction of the critical path’s time. In ocean, processor 0
dominates the critical path, which is unsurprising since
processor 0 performs the sequential work in this algorithm.

Broadcast vs. Directory Protocols. To study how different
cache coherence protocols affect the distribution of global
slack, we compare our MOSI broadcast snooping protocol with
a directory protocol similar to that used in the AlphaServer
GS320 [5]. In Figure 9, we plot the cumulative distribution
function (CDF) of global slack for apache and j bb on an 8-
processor system. The x-axis is the global slack value plus one
shown in log scale. For any global slack x, the y-axis
corresponds to the fraction of DAG nodes (instructions) that
have global slack less than or equal to x. From the results, we
see that instructions in the directory system possess more slack
than those in the broadcast system. Since the systems we
model have plentiful network bandwidth, by broadcasting
cache block requests to all nodes in the system, the broadcast
protocol avoids indirections and achieves better performance
than the directory protocol. Our results show that, on average,
the critical path of a workload in the directory system is 38%
longer in time than that in the broadcast system. In the
directory system, instructions typically wait longer for cache
misses, thus making them have more slack in their executions.

Choice of Endpoint Processor. In Section 4.3, we claimed that,
for continuous workloads, we can choose the last finished node
from an arbitrary processor as the endpoint node. We now
present results that support this claim. To investigate the
effects of the endpoint choice, we ran Algorithm 1 for each of
our continuous workloads (apache, j bb, ol t p, and sl ash)
P times for a system of P processors, and in each run we
constructed a DAG with the endpoint node chosen from a
different processor. Our results show that, for each workload,
all of the P DAGs have almost identical global slack
distribution. Specifically, for any given global slack x, the
fraction of instructions that have global slack x differs on
average by the order of 1077 in their values among all P DAGs.
Moreover, the fraction of instructions that are on the critical
path (i.e., with global slack zero) differs on average by 10 in

=X
o
[oe]

|

with global slack <

CDF: fraction of instructions

s
T Lkt

Di rectory PETTTLITT

Broadcast L

T T T T T T T T T
1 10 100 1000 10000
GlobalSlack + 1

100000

5
8= i
=V I
23
5? |
58 I
= O
g8 i
=5
5= |
° Broadcast L
Directory s
‘ o ‘ i ' T T —
! 10 100 1000 10000 100000
GlobalSlack + 1

Figure 9. Impact of cache coherence protocol.

1968 1626

1200
1100 4
1000

800 -

W 2 processors
04 processors
E 8 processors

Node reduction ratio
D
S
o

apache barnes- jbb ocean oltp slash

hut

(a) Node reduction ratios.

1484 1195

W2 processors
04 processors
B8 processors

Edge reduction ratio

apache barnes-
hut

jbb ocean oltp slash

(b) Edge reduction ratios.

Figure 10. Graph reduction ratios.

their values among all P DAGs. These results indicate that the
endpoint choice has negligible impact on the global slack
distribution for continuous workloads. While randomly
choosing the endpoint node may affect the computation of
individual instruction slacks, our results suggest that we can
design control policies for continuous workloads based on
aggregated slack values over an interval.

Graph Reduction. To measure the effectiveness of our graph
reduction, we plot the ratios of original nodes (or edges) to the
reduced number of nodes (or edges). Figure 10(a) shows the
ratios for the number of nodes reduced, and Figure 10(b)
shows the ratios for the number of edges. With the reduction,
we can reduce a DAG on average by a ratio of 485 in terms of
the number of nodes and 352 in terms of the number of edges.
Among all the workloads and systems in our experiments, the
maximum node reduction ratio is 1968 and the maximum edge
reduction ratio is 1484. For all the workloads, except ocean,
the reduction ratios decrease as the number of processors
increases. This is because with fewer processors, more RAW
edges become local in a processor, which enables the
conditions of Theorem 3 to occur more frequently. The ocean
workload exhibits an opposite pattern because the conditions
of Theorem 2 occur more frequently with more processors,
which causes Theorem 2 to dominate the reductions.

7. RELATED WORK

Related work in criticality exists at the microarchitectural and
software levels. Fields et al. [3, 4] developed the first
microarchitectural model of the critical path and slack. They
use DAGs to model program executions on dynamically
scheduled uniprocessors. As described in Section 3.1, their
model takes into account various constraints at the
microarchitecture level. Other research [6, 7, 16] has explored
using critical path and slack analysis to find performance
bottlenecks in parallel programs. Most of these studies model
dynamic program events at the procedure level or above.
Critical path and slack analysis has also been used in
multiprocessor scheduling [8, 9]. In the scheduling algorithms,
critical path and slack information guides the scheduling of
tasks to processors in order to minimize runtime.

Prior research has also explored the removal of unnecessary
dependences from execution or task graphs. Beckmann [2]
dynamically removed redundant data dependence edges in
acyclic task graphs. Netzer [11] dynamically removed shared
data dependencies from execution traces for debugging
purposes, if the dependences were not necessary for replaying
execution.

8. CONCLUSIONS AND FUTURE WORK

Recent research on processor microarchitecture shows that
hardware control policies based on instruction -criticality
provide better performance and resource utilization. We
extended a uniprocessor model of criticality to shared memory
multiprocessor systems by adding RAW edges to model inter-
processor communication. We described an algorithm that
computes the global slack for each node in a DAG, and we
showed how the algorithm effectively chooses an endpoint
node for continuous workloads. To enable efficient offline
processing, we introduced a graph reduction technique that
reduces a DAG to an equivalent but much smaller DAG. We
also provided detailed simulation results on aspects of
instruction criticality on a shared memory multiprocessor
system.

Our future research will focus on developing an efficient
online algorithm that dynamically evaluates instruction
criticality, so that multiprocessor systems can use instruction
criticality to design specific hardware control policies. While it
is impossible to perfectly compute criticality (a function of
slack) on the fly, since the exact algorithm requires a backward
pass through an entire execution, there are several avenues to
pursue for accurately predicting global slack. Given a
sufficiently accurate predictor, we plan to pursue criticality-
based policies for managing system resources, improving
power efficiency, and dynamic scheduling.

ACKNOWLEDGMENTS

We thank Anne Condon, Herbert Edelsbrunner, Ronald Parr,
and Haifeng Yu for helpful discussions of this work. We thank
Mark Hill for his detailed comments and suggestions on the
final draft of this paper.

This work is supported in part by the US National Science
Foundation (EIA-99772879, ITR-0082914, CCR-0204367, and
CCR-0208920), Intel, IBM, Microsoft and the Duke University
Graduate School. Sorin is supported by a Warren Faculty
Scholarship.

REFERENCES

[1] Alaa R. Alameldeen, Carl J. Mauer, Min Xu, Pacia J. Harper,
Milo M.K. Martin, Daniel J. Sorin, Mark D. Hill, and
David A. Wood. Evaluating Non-deterministic Multi-
threaded Commercial Workloads. In Proceedings of the Fifih
Workshop on Computer Architecture Evaluation Using
Commercial Workloads, pages 30-38, February 2002.

Carl J. Beckmann. Hardware and Software for Functional
and Fine Grain Parallelism. PhD thesis, University of Illinois
at Urbana-Champaign, April 1994.

Brian Fields, Rastislav Bodik, and Mark D. Hill. Slack:
Maximizing Performance Under Technological Constraints.
In Proceedings of the 29th Annual International Symposium
on Computer Architecture, pages 47-58, May 2002.

10

[4] Brian Fields, Shai Rubin, and Rastislav Bodik. Focusing
Processor Policies via Critical-Path Prediction. In
Proceedings of the 28th Annual International Symposium on

Computer Architecture, pages 74-85, July 2001.

Kourosh Gharachorloo, Madhu Sharma, Simon Steely, and
Stephen Von Doren. Architecture and Design of AlphaServer
GS320. In Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 13-24, November 2000.

Jeftrey K. Hollingsworth. Critical Path Profiling of Message
Passing and Shared-Memory Programs. /[EEE Transactions
on Parallel and Distributed Systems, 9(10):1029-1040,
October 1998.

Jeffrey K. Hollingsworth and Barton P. Miller. Slack: A New
Performance Metric for Parallel Programs. Technical Report
1260, Computer Sciences Department, University of
Wisconsin—-Madison, December 1994.

H. Kasahara and S. Narita. Practical Multiprocessor
Scheduling Algorithms for Efficient Parallel Processing.
IEEE Transactions on Computers, C-33(11):1023-1029,
November 1990.

Yu-Kwong Kwok and Ishfaqg Ahmad. Static Scheduling
Algorithms for Allocating Directed Task Graphs. ACM
Computing Surveys, 31(4):406—471, December 1999.

(]

[10] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson,
Daniel Forsgren, Gustav Hallberg, Johan Hogberg, Fredik
Larsson, Andreas Moestedt, and Bengt Werner. Simics: A
Full System Simulation Platform. [EEE Computer, 35(2):50—
58, February 2002.

[11] Robert H. B. Netzer. Optimal Tracing and Replay for
Debugging Shared-Memory Parallel Programs. In
Proceedings of the ACM/ONR Workshop on Parallel and
Distributed Debugging (PADD), pages 1-11, 1993.

[12] Srikanth T. Srinivasan, Roy Dz-ching Ju, Alvin R. Lebeck,
and Chris Wilkerson. Locality vs. Criticality. In Proceedings
of the 28th Annual International Symposium on Computer
Architecture, pages 132—143, July 2001.

[13] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamic
Prediction of Critical Path Instructions. In Proceedings of the
Seventh IEEE Symposium on High-Performance Computer
Architecture, pages 185-196, January 2001.

[14] Eric S. Tune, Dean M. Tullsen, and Brad Calder. Quantifying
Instruction Criticality. In Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques, September 2002.

[15] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2
Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24-37, June 1995.

[16] Cui-Qing Yang and Barton P. Miller. Critical Path Analysis
for the Execution of Parallel and Distributed Programs. In
Proceedings of the Seventh Conference on Distributed
Memory Computer Systems, pages 366—373, June 1988.

	Quantifying Instruction Criticality for Shared Memory Multiprocessors
	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. Introduction
	2. A DAG Model for Execution
	3. Mapping DAGs to Systems
	3.1 Uniprocessor Systems
	3.2 Multiprocessor Systems

	4. Computing Slack
	4.1 Definitions
	Definition 1
	Definition 2
	Definition 3
	Definition 4
	(EQ 1)

	4.2 Algorithm for Computing Global Slack
	4.3 Finite vs. Continuous Workloads

	5. Graph Reduction
	Definition 5
	Theorem 1
	Proof
	Definition 6
	Lemma 1
	Proof
	Theorem 2
	Proof
	Theorem 3
	Proof

	6. Experimental Results
	6.1 Methodology
	Simics
	Processor Model
	Memory Model
	Workloads
	Data Collection.

	6.2 Results
	Slack Distribution
	Critical Path Time Breakdown
	Broadcast vs. Directory Protocols
	Choice of Endpoint Processor
	Graph Reduction

	7. Related Work
	8. Conclusions and Future Work
	ACKNOWLEDGMENTS
	REFERENCES

