
Spin Detection Hardware for Improved
Management of Multithreaded Systems
Tong Li, Alvin R. Lebeck, Senior Member, IEEE, and Daniel J. Sorin, Member, IEEE

Abstract—Spinning is a synchronization mechanism commonly used in applications and operating systems. Excessive spinning,

however, often indicates performance or correctness (e.g., livelock) problems. Detecting if applications and operating systems are

spinning is essential for achieving high performance, especially in consolidated servers running virtual machines. Prior research has

used source or binary instrumentation to detect spinning. However, these approaches place a significant burden on programmers and

may even be infeasible in certain situations. In this paper, we propose efficient hardware to detect spinning in unmodified applications

and operating systems. Based on this hardware, we develop 1) scheduling and power policies that adaptively manage resources for

spinning threads, 2) system support that helps detect when a multithreaded program is livelocked, and 3) hardware performance

counters that accurately reflect system performance. Using full-system simulation with SPEC OMP, SPLASH-2, and Wisconsin

commercial workloads, we demonstrate that our mechanisms effectively improve the management of multithreaded systems.

Index Terms—Deadlock, livelock, multiprocessor, multithreaded system, performance counter, scheduling, spinning, synchronization,

virtualization.

�

1 INTRODUCTION

IN an ideal world, programs would be perfectly tuned and
bug-free. In reality, however, this is often not true. One

particular situation is when programs use spinning (also
known as busy-waiting) synchronization. When a thread is
spinning, it wastes resources such as the processor and
power. Excessive spinning often indicates performance or
correctness (e.g., livelock) problems.

If we could detect whether a thread is spinning, there
would be many benefits. For example, the operating system
could de-schedule long-spinning threads to allow other
threads to run. Such a scheme would be particularly
beneficial to virtual machine systems, given the current
trend of server consolidation [1], [2], [3], [4]. When detecting
long-spinning applications or guest operating systems, the
virtual machine monitor (VMM) could de-schedule an
entire virtual machine (VM) such that other VMs could
run. Another benefit of detecting spinning is that, if a group
of threads are spinning simultaneously, we could analyze if
a livelock exists and provide debugging support to
programmers. We could also design more accurate hard-
ware performance counters that factor out spinning
instructions, because these instructions often cause inflated
performance statistics, such as instructions-per-cycle (IPC).

Prior research has studied ways to detect spinning.
Examples include the Denali [4] and Xen [1] virtual machine

systems, which detect spinning in OS idle loops by
modifying the OS source code. For the Denali system,
Whitaker et al. [4] showed that descheduling a VM spinning
in the idle loop prevented a 66 percent throughput
degradation for their applications. The VMWare ESX Server
performs binary translation to detect idle-loop spinning in
certain operating systems [5]. Intel recognizes the difficulty
of identifying spinning and suggests visually inspecting
synchronization code [6] with the aid of the VTune
Performance Analyzer [6]. These approaches, however,
place a significant burden on programmers. They either
suit only specific spinning scenarios or require source
modification, which is difficult and sometimes even
infeasible.

To overcome the limitations of existing approaches, we
design hardware to detect spinning. Our hardware is small
(less than 1 KB) and off the critical path. It detects spinning
in unmodified applications and operating systems with no
performance overhead. These design features are similar to
what Intel is trying to achieve with their hardware support
for virtualization [2].

Our hardware enables us to realize the benefits of spin
detection. First, we study how to improve OS scheduling
and power management by not allocating resources to
spinning threads. Our evaluation shows that this design can
improve application performance by 16.4 percent even in
simple settings. Second, we extend the spin detector to
detect potential livelocks. Intuitively, if all threads of a
program are simultaneously spinning, then the program is
livelocked. Finally, we develop accurate performance
counters that factor out spinning instructions.

We make three contributions in this paper:

. We define the conditions of spinning. These condi-
tions enable general spin detection without the need
of application semantic knowledge.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 6, JUNE 2006 1

. T. Li is with Intel Labs, Mail Stop JF2-65, 2111 NE 25th Ave., Hillsboro,
OR 97124. E-mail: tong.n.li@intel.com.

. A.R. Lebeck is with the Department of Computer Science, Duke University,
Box 90129, Durham, NC 27708-0129. E-mail: alvy@cs.duke.edu.

. D.J. Sorin is with the Department of Electrical and Computer Engineering,
Duke University, Box 90291, Durham, NC 27708-0291.
E-mail: sorin@ee.duke.edu.

Manuscript received 8 July 2005; revised 13 Feb. 2006; accepted 4 Mar. 2006;
published online 26 Apr. 2006.
Recommended for acceptance by A. Gonzalez.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0325-0705.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

. We develop efficient hardware for detecting if a
thread is spinning. Our hardware releases the
burden on programmers and supports unmodified
applications and operating systems.

. We extend our spin detection hardware to enable
1) efficient scheduling and power management,
2) hardware support for detecting livelock, and
3) accurate performance counters.

The remainder of this paper is organized as follows: In
Section 2, we discuss the origins of spinning in multi-
threaded systems (including SMT and multiprocessors), our
motivation for hardware spin detection, and the conditions
of spinning. We present the spin detection hardware in
Section 3. We show our simulation methodology and
evaluation of the hardware in Section 4. We then study
the three applications of our spin detection hardware in
Sections 5, 6, and 7. We discuss related work in Section 8
and conclude in Section 9.

2 SPINNING IN MULTITHREADED SYSTEMS

In this section, we discuss why spinning exists in multi-
threaded systems (Section 2.1), why we design hardware to
detect spinning (Section 2.2), and the conditions that enable
hardware spin detection (Section 2.3). To avoid confusion
between threads (software constructs) and thread contexts
(hardware for running threads in some systems), we refer to
the latter as processors without loss of generality.

2.1 Origins of Spinning

Spinning is a waiting mechanism with which the waiting
thread continuously checks for the occurrence of a
synchronization event. Blocking is an alternative mechan-
ism that allows the waiting thread to be suspended and its
resources to be reused. Both spinning and blocking are
widely used in multithreaded systems, including SMT and
multiprocessors.

Locks, barriers, and flags are the three most prevalent
synchronization abstractions and their implementations
often consist of spinning. In the area of high-performance
computing, OpenMP is the de facto standard for shared-
memory parallel programming. OpenMP locks and barriers
use spinning as a means for thread synchronization.

Table 1a shows the SPARC assembly code of a spin loop
in omp_set_lock, a lock acquire function frequently used
by programs in the SPEC OpenMP benchmark suite (SPEC
OMP V3.0) [7]. Spinning also occurs in various commercial
server applications, such as database servers. Table 1b
shows an example of flag spinning in the IBM DB2 database
system controller process db2sysc. Besides user-space
applications, spinning is also widely used within operating
system kernels. Spin locks and flags are prevalent in all
existing operating systems that support SMPs. Table 1c
shows a spin loop in the Solaris 8 kernel dispatcher. In
many operating systems, the idle loop is also a spin loop in
which the operating system waits for work.

2.2 Motivation for Hardware Spin Detection

As we discussed in Section 1, detecting spinning has many
benefits. One approach to detecting spinning is to instru-
ment the spin code. However, instrumentation has two
limitations.

First, program source code is often unavailable, making
it difficult, if not impossible, to support proprietary and
legacy code. Although binary instrumentation is possible, it
places a burden on programmers and may introduce
performance overhead.

Second, even when source code is available, identifying
all spinning in a large code base places a significant burden
on programmers, especially when the code does not use
common libraries (e.g., spinning on a flag) [6]. Some code,
such as the Solaris 8 idle loop, exhibits spinning only on
certain execution paths, and thus is difficult to identify
statically.

To free the burden from programmers and avoid
perturbing application performance, we design hardware
to dynamically detect if a thread is spinning. Our hardware
supports unmodified applications and operating systems
with no performance overhead. These features are similar to
the design goals of the Intel Virtualization Technology [2].
Our hardware particularly suits virtual machine environ-
ments in which support for unmodified and legacy code is
desired and detecting spinning is essential for high
performance [8].

In Fig. 1, we compare software and hardware spin
detection for two SPLASH-2 [9] benchmarks, Radiosity

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 6, JUNE 2006

TABLE 1
Spin Loop Examples in SPARC Assembly

(a) Spinning in OpenMP, (b) spinning in DB2 controller, and (c) spinning in Solaris dispatcher.

and Volrend, on a simulated 8-processor SMP system (see
Section 4 for our simulation methodology). The total bar
represents the total number of spinning instructions
committed in the benchmark’s entire execution. We obtain
this value by instrumenting all spin loops in the bench-
mark’s program and the PARMACS library [10]. The
software bar corresponds to spins detected by a software
detection mechanism, which instruments spin loops only in
the PARMACS library. The hardware bar corresponds to
spins detected by our hardware (details in Section 3). As we
can see, our hardware detects nearly all spins and the
software mechanism misses many of them. The spins that
the hardware mechanism misses are due to having finite
hardware and, thus, having to use heuristics. The spins that
the software mechanism misses are due to flag spinning in
the benchmarks’ programs (not the library). However,
identifying flag spinning in application programs requires
thorough understanding of the programs and, thus, can be a
tremendous burden on programmers [6].

To design hardware for spin detection, we face the
challenge that hardware has no knowledge of application
semantics and, thus, must exploit features common in all
forms of spinning. In the next section, we study the general
conditions that enable dynamic spin detection in hardware.

2.3 General Conditions for Identifying Spinning

Intuitively, if a thread executes a static instruction and later
executes it again (e.g., in another iteration of a loop) with
the state of the system unchanged, then the thread is
spinning between the two executions of that instruction.
More precisely, a thread on processor P is spinning
between time ta and time tb if its execution satisfies the
following two conditions.

Spin Condition 1: The observable state of the thread for
the period between ta and tb is the same at ta and tb.

For a given period of time in a thread’s execution, the
observable state of the thread includes the architectural
registers and memory locations accessed by the thread
during the given period. Since the observable state includes
the program counter (PC), an important implication of this
condition is that the thread executes the same static
instruction (PC) at both ta and tb. Therefore, all instructions
executed between ta and tb form a cycle in the control flow
graph of the thread’s program. We call this cycle a spin loop
(although it can be more complex than a simple “loop”) and
each instruction executed in the spin loop a spinning
instruction. If Spin Condition 1 is satisfied, all the archi-
tectural registers and memory locations accessed by the
thread between ta and tb have the same values at ta and tb.
Thus, the thread performs no useful work with respect to its

computation on processor P . This condition, however, does
not preclude the observable state from changing between ta
and tb, as long as it changes back to its initial state by tb.

Spin Condition 2: Any change made by the thread to its
observable state between ta and tb is not observed by any
thread outside processor P .

This condition captures the scenario in which changes
made by the thread to its observable state between ta and tb
may cause changes to the observable state of another thread
running on a different processor. This scenario can happen
if the observable states of the two threads overlap, e.g., they
both access the same memory locations. If Spin Condition 2
is satisfied, then the execution of the thread between ta and
tb does not affect the computation of any thread outside
processor P .

The above two conditions provide the basis for spin
detection and ensure that we never incorrectly detect
spinning that does not exist. In some situations, these
conditions may be restrictive. For example, when imple-
mented with a two-phase waiting algorithm [11], [12], a
thread may spin for a while and then block. During each
spin loop iteration, the thread typically increments a
counter until it exceeds some threshold. Thus, Spin
Condition 1 is violated because the observable state of the
thread is different at the start and end of each iteration.
However, from the programmer’s point of view, the thread
does spin because all the state changes have no contribution
to the intended computation. To detect such spinning,
software mechanisms can be used in conjunction with our
hardware. On the other hand, the time of such spinning in a
two-phase waiting algorithm is often programmed to be
short to optimize the overall synchronization performance.
Thus, missing the detection of such short spinning does not
have much impact on our scheduling, power management,
and livelock detection mechanisms.

3 DYNAMIC SPIN DETECTION

In this section, we present our hardware design. To detect
spinning, our hardware needs to dynamically check the two
conditions in Section 2.3. For Spin Condition 1, we observe
that any control flow cycle must have an instruction that
causes a backward transfer of control flow. We call this
instruction a backward control transfer (BCT). A BCT can be a
backward conditional taken branch, unconditional branch,
or jump instruction. Although other instructions such as
calls, call returns, traps, and trap returns can also cause
backward transfers of control flow, practical spin loops
rarely rely only on these instructions to implement control
flow cycles. Thus, we do not include them as backward
control transfers.

For Spin Condition 1, we check whether a processor
commits a BCT at time ta and later commits the same BCT
(PC) again at time tb. If so, between ta and tb, the processor
has executed one iteration of a control flow cycle. To further
check whether the observable state of the thread is the same
at ta and tb, we divide it into observable memory state and
observable register state, and we discuss these issues
separately in Section 3.1 and Section 3.2. We also show
that, with our approach, if Spin Condition 1 is satisfied,
then Spin Condition 2 is satisfied as well. We explain how

LI ET AL.: SPIN DETECTION HARDWARE FOR IMPROVED MANAGEMENT OF MULTITHREADED SYSTEMS 3

Fig. 1. Comparison between software and hardware spin detection.

to detect nested spin loops in Section 3.3 and describe our
hardware in detail in Section 3.4. We illustrate the operation
of our hardware via an example in Section 3.5.

3.1 Observable Memory State

In this section, we consider the observable memory state
part of Spin Condition 1. Given the execution of a thread
between time ta and time tb, we assume that any non-silent
store [13] executed by the thread can cause its observable
memory state at tb to be different from its initial observable
memory state at ta. A non-silent store is a store instruction
that writes to a memory address with a value different from
the existing value at that address. Our assumption is
conservative because the location changed by a non-silent
store may later change back to its initial value. However, it
simplifies our hardware for checking Spin Condition 1. Any
non-silent store committed between ta and tb indicates that
the observable memory state may differ at ta and tb. To
detect non-silent stores to cacheable memory locations, we
use the ECC store verify approach of Lepak and Lipasti [13].
For stores to non-cacheable memory locations, such as I/O
addresses, we conservatively assume they are all non-silent.

We assume an architecture in which processors share
memory but not registers, i.e., instructions on one processor
cannot write registers on a different processor.1 Thus, for
Spin Condition 2, a thread can only change the observable
state of another thread by modifying a shared memory
location. Given a thread’s execution between ta and tb, if all
stores are silent, then the thread makes no change to shared
memory locations, and thus Spin Condition 2 is satisfied.
Therefore, by detecting non-silent stores, we can check if the
observable memory state part of Spin Condition 1 and the
entire Spin Condition 2 are both satisfied.

3.2 Observable Register State

In this section, we describe how to check the observable
register state part of Spin Condition 1. Given the execution
of a thread between time ta and time tb, the observable
register state of the thread is the same at ta and tb if and only
if the entire register state of the processor is the same. The
register state of a processor consists of all the architectural
registers, including control registers, but excluding perfor-
mance counters and registers mapped to the I/O space.2

Therefore, for Spin Condition 1, we can save the processor
register state at ta and check if it is the same at tb. This
approach is logically simple, but the challenge is to
implement it efficiently.

To efficiently check if the observable register state
remains the same, we note that the only registers that can
change between ta and tb are those written by the thread.
Thus, checking if the observable register state of a thread
remains the same is equivalent to checking if the registers
written by the thread are the same. In practice, spin loops
are often small and each loop iteration only writes a small

number of architectural registers. In all the workloads we
study, the maximum number of architectural registers
written in a spin loop iteration is only 17. Therefore, by
maintaining and comparing only the registers written by
the thread, we can greatly reduce hardware costs. The
difficulty, however, is that the processor does not know a
priori at ta which registers the thread will write during its
execution between ta and tb. Nevertheless, our implementa-
tion can discover these registers as the execution progresses.

We use a Register Update Buffer (RUB) to dynamically
track the architectural registers written by a thread in each
iteration of a potential spin loop. An invariant in our
algorithm is that the RUB always keeps the architectural registers
whose current values are no longer the same as when the loop
iteration began. The RUB is empty when the processor starts
a potential spin loop iteration, i.e., when it commits a BCT.
For each instruction it then commits, the processor checks if
the instruction’s architectural (i.e., logical) destination
register is already in the RUB. If not, the processor has
discovered a new register written by the thread. It then
compares the new value of this register (i.e., the value being
committed) to its old value (i.e., the value before being
overwritten by the commit). If not equal, the processor adds
the register number and its old value to the RUB. If the
register is already in the RUB, then the processor compares
its new value to its current value in the RUB. If equal, it
deletes this register from the RUB; otherwise, no action is
necessary. With this algorithm, when the processor reaches
the end of the iteration, i.e., when it commits a new
dynamic instance of the same static BCT, if the RUB is
empty, then the observable register state of the thread is the
same as when the iteration began. We will present full
details of the RUB implementation in Section 3.4.

3.3 Nested Loops

Identifying a control flow cycle (even without trying to
detect spinning) involves saving the PC of a BCT and
checking if the thread commits the same PC again. At a first
glance, it seems sufficient to save only the PC of the most
recently committed BCT. This is, however, not true in the
presence of nested loops. Table 2 shows the SPARC
assembly code for an example nested spin loop in the lock
acquire routine of the PARMACS library. When a thread
fails to acquire a lock, it spins until succeeding both the test
and test&set.

To identify a nested spin loop, we need to keep multiple
PCs, corresponding to the BCT of each level of the nested
loop. Since the depth of nesting is typically small in realistic
spin loops, we only need to keep the PCs for a handful of the
most recent BCTs. We add a Spin Detection Table (SDT) after
the commit stage of the processor pipeline. For each BCT it
commits, the processor searches the SDT for a matching PC. If
found, a control flow cycle is identified. If not found, the
processor inserts the PC of this BCT at the top of the SDT, and
pushes down all the existing SDT entries, thereby evicting the
bottom entry if the SDT is full. To avoid physically moving the
SDT entries, we manage the SDT as a circular array and use
two counters, SDT_top and SDT_bottom, to maintain the
indices of the top and bottom SDT entries. For all our
workloads, experiments show that a 16-entry SDT provides
the same results as an unbounded SDT.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 6, JUNE 2006

1. We treat I/O devices as processors that share I/O space memory with
the host processor to which they are connected.

2. Not all architectures require performance counters to be implemented
and, when they are implemented, including them (e.g., cycle counters) in
processor register state would cause the state to always change. Since no
practical spin loop involves performance counters, we do not include them
in processor register state. We do not include memory-mapped registers in
processor register state because they are treated as part of the memory state.

3.4 Spin Detection Hardware

In this section, we describe in detail the components of our
hardware:

. A 16-entry SDT: Each 33-bit entry contains a PC field,
corresponding to a potential control flow cycle, and
a RUB_overflow (O) bit (see below). Whenever the
processor commits a non-silent store, it clears the
SDT by setting both SDT_top and SDT_bottom to
invalid.

. A 64-entry RUB: Each 57-bit entry contains four
fields: register number (RegNum), value of the
register (RegVal), valid (V) bit, and SDT bit vector.
For each SDT entry, the RUB maintains the corre-
sponding observable register state of the running
thread. Our experiments show that a 64-entry RUB
provides the same results as an unbounded RUB for
our workloads.

The total size of these structures is less than 1 KB. Spin
detection hardware is after the Commit stage of the pipeline
and thus its latency is off the critical path and does not directly
affect microprocessor performance. To guarantee that spin
detection hardware is not a throughput bottleneck that
requires lengthening the clock cycle, we pipeline it.

In each RUB entry, a one in the ith least significant bit of
the SDT bit vector indicates that register RegNum corre-
sponds to SDT entry i. For each BCT the processor commits,
if its PC matches the PC of an SDT entry, say k, then the
processor does a wired-OR over the kth bit of all the bit
vectors in the RUB. If the result is one, then there exists at
least one entry in the RUB that corresponds to this SDT
entry. This means that the observable register state of the
thread differs and, thus, the thread was not spinning. If the
result is zero, then the observable register state is the same
and, thus, the thread was spinning.

To manage RUB space, we use a free map (a 64-bit vector)
to track free RUB entries, i.e., entries with zero in the valid (V)

bit. Initially, all valid bits are zero. Any insertion or deletion
consults the free map. When the processor inserts a new entry
into the RUB (according to the conditions in Section 3.2), it
initializes the entry’s valid bit to one, and the SDT bit vector to
contain ones in the bits corresponding to all the valid SDT
entries and zeros elsewhere.

When the processor inserts an entry into a full RUB, it
locates all SDT entries pointed to by this entry’s bit vector.
For each of these SDT entries, the processor sets the
RUB_overflow (O) bit in the entry to indicate that the
RUB is not large enough to hold its corresponding
observable register state. The processor then considers
(conservatively) that the observable register state for these
SDT entries has changed and will not detect spinning for
them. In this case, all of the registers maintained in the RUB
for these SDT entries will no longer be useful. Thus, the
processor clears the bits pointing to these entries from the
bit vector of each RUB entry. If a bit vector becomes all-zero
after the clear, the processor adds its RUB entry to the free
map. Similarly, when the processor evicts an entry from the
SDT, it clears the entry’s corresponding bit in the bit vectors
of all RUB entries. If a bit vector becomes all-zero, the
processor frees the corresponding RUB entry.

The spin detection hardware resides in the commit stage
of the processor pipeline. Since spin detection is not latency-
sensitive, the RUB pipelines its accesses to the register file
via a single dedicated read port. The RUB hardware is
similar to a processor issue queue in that it performs
associative searches for matching registers. Since our
hardware is small and off the processor critical path, it
has no impact on processor cycle times.

3.5 Example Operation

Fig. 2 illustrates the operation of a two-entry SDT and two-
entry RUB for a nested spin loop. Initially, the SDT and RUB
are empty and all registers are zero. The processor starts at

LI ET AL.: SPIN DETECTION HARDWARE FOR IMPROVED MANAGEMENT OF MULTITHREADED SYSTEMS 5

TABLE 2
Nested Spin Loop in PARMACS’s Lock Acquire Routine

Fig. 2. Operation of two-entry SDT and two-entry RUB. (a) Assume that
I3 is not taken and I4 is taken. Thus, I4 is inserted into the SDT after it
commits. (b) After I0 commits, r1 and its old value 0 are inserted into the
RUB. The bit vector is set to 01 to indicate that the RUB entry
corresponds to SDT entry 0. Assume that I1 is a silent store, so it has no
effect. (c) I2 changes r1 back to its original value 0, so its RUB entry is
deleted. (d) Assume that I3 is taken this time. Set SDT_top =
(SDT_top-1+SDT_size) mod SDT_size, and insert I3 at the top of
the SDT. (e) I0 commits again. Insert r1 and its old value 0 into the RUB.
The bit vector is 11, indicating that the RUB entry corresponds to SDT
entries 0 and 1.

instruction I0 and follows steps in Figs. 2a, 2b, 2c, 2d, and

2e. Finally, when I3 commits again, both the SDT and RUB

are the same as in Fig. 2d. The processor finds that SDT

entry 1 has the same PC as I3 and no entry in the RUB

corresponds to it, thus concluding that the thread has been

spinning since the last dynamic instance of I3.

4 METHODOLOGY AND EVALUATION OF SPIN

DETECTION

4.1 Methodology

To evaluate spin detection and its applications, we simulate

a symmetric multiprocessor as our target multithreaded

system. We use a heavily modified version of the GEMS

simulation infrastructure [14]. Our simulator is based on

Simics/sun4u 1.4.4 [15], which models the SPARC V9

architecture in sufficient detail to boot unmodified Solaris 8.

Each node in our system consists of a processor, two levels

of cache, some portion of the shared memory, and a

network interface. We model processor timing using TFSim

[16], and we use a detailed memory hierarchy timing

simulator that models a MOSI broadcast snooping cache

coherence protocol and an interconnection network com-

posed of a hierarchy of switches. Table 3 shows the

parameters of our target processor and memory system.
We use SPEC OMP v3.0 [7] and SPLASH-2 [9] benchmarks

and two workloads from the Wisconsin Commercial Work-

load Suite [17] to evaluate spin detection and its applications.

For the SPEC OMP benchmarks, we use the medium versions

and compile them using Sun Studio 9 with flags suggested by

SPEC for Sun systems. We omit three benchmarks: Galgel,

Mgrid, andWupwise, because they take too much time to run

on our simulator. Table 4a shows our settings for the OMP

benchmarks. We use the training inputs, as opposed to the

reference inputs, such that the simulations finish within a

reasonable amount of time. The central part of most OMP

benchmarks is a major loop whose body contains code

executed by multiple threads in parallel (one iteration of the

loop often contains a significant amount of computation). We

set the number of OpenMP threads equal to the number of

processors in the simulated system. For every benchmark

except Art and Equake, we warm up the system for one

iteration and then run one more iteration for detailed timing

simulation. The code ofArtdoes not have a major loop. Thus,

we consider its entire program as one “iteration” and run it for

a 36� 36 windowed image until completion. ForEquake, we

run it for two iterations, since it contains relatively little

computation in one iteration of its major loop compared to the

other benchmarks.
Table 4b shows the problem sizes that we use for the

SPLASH-2 benchmarks. For each benchmark, we first run it

with the warmup problem size to prime the system, and

then run it again with the simulation problem size to

perform detailed timing simulation. To avoid measuring

thread forking, our timing simulation starts at the begin-

ning of the parallel phase and continues until the bench-

mark finishes. Table 5 describes our two commercial

workloads.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 6, JUNE 2006

TABLE 3
Target System Parameters

TABLE 4
Configurations of the Scientific Workloads

(a) SPEC OMP settings and (b) SPLASH-2 problem sizes.

4.2 Evaluation

4.2.1 Microbenchmarks

We first evaluate our spin detector with two microbe-
nchmarks to show that it can accurately detect spinning in
both lock-intensive applications and the operating system
kernel. The first microbenchmark, called contended lock,
implements N threads in an N-processor system. All threads
vie for a single spin lock, which provides mutual exclusion
for a counter that each thread tries to increment until it
reaches 100,000. The second microbenchmark, called null,
models five million cycles of an idle system in which only
the operating system runs and no user threads exist. We run
both microbenchmarks on a system of N processors, where
N equals 1, 2, 4, 8, and 16. In Fig. 3, we plot the total and
useful (i.e., nonspinning) instructions committed. The
results show that we detect significant amounts of spinning.
As N increases, the total instructions increase, but the useful
instructions stay constant. In contended lock, only one
thread holds the lock at a time and all others spin until the
lock is free. In null, spinning comes from the Solaris idle
thread, which executes a surprisingly complex nested loop
to test for runnable threads. The useful instructions in null

are so few that their corresponding bars are hardly seen in
the figure. These two microbenchmarks demonstrate that
our spin detector can accurately detect both simple
spinning due to spin locks and complex flag spinning that
involves hundreds of instructions in one spin loop iteration.

4.2.2 Scientific and Commercial Workloads

In Fig. 4, we show the total number of committed
instructions versus useful (nonspinning) instructions for a
subset of the SPEC OMP and SPLASH-2 benchmarks and
the two commercial workloads. For SPEC OMP and

SPLASH-2, we choose two benchmarks: one that has the

least fraction of spinning (left figure) and one that has the

most (right figure) among all the benchmarks in the same

suite. The spinning in these benchmarks is due to spin

locks, flags, and barriers. We see that the number of total

instructions increases as the number of processors in-

creases, while the number of useful instructions stays

almost constant; the same is also true for the benchmarks

that are not shown. This demonstrates that our spin

detector accurately detects spinning instructions.
The commercial workloads do not have much spinning

at the user level. As we see in Fig. 4, the number of useful

instructions does not stay constant as the number of

processors increases for the two commercial workloads.

This is because these workloads make significant use of the

OS. The amount of work that the OS performs changes as

the number of processors varies (so does the number of

threads in the system), thus causing the number of useful

instructions to change. Nevertheless, the differences be-

tween the total and useful instructions in Fig. 4 indicate that

our spin detector detects spinning. Further inspection of our

data shows that most of this spinning comes from flags and

spin locks in the Solaris kernel dispatcher.
The evaluation in this section has demonstrated the

accuracy of our spin detection hardware. As we showed in

Section 2.2, our hardware design releases the burden that

software approaches place on programmers. Since it

requires no program modification, our hardware can

support both legacy and proprietary software. In the next

three sections, we show how to apply our hardware to

improving performance and resource management of

multithreaded systems.

LI ET AL.: SPIN DETECTION HARDWARE FOR IMPROVED MANAGEMENT OF MULTITHREADED SYSTEMS 7

TABLE 5
Configurations of the Commercial Workloads

Fig. 3. Total versus useful instructions for the microbenchmarks.

5 SCHEDULING AND POWER MANAGEMENT

We now show how spin detection helps enable efficient

OS scheduling and power management.

5.1 Scheduling

We extend our spin detector to implement a spin-then-yield

synchronization mechanism to improve thread scheduling.

When the hardware detects that a thread has spun for N

iterations (i.e., the processor has committed the same BCT

N times), where N is a tunable parameter, it raises an

interrupt to the processor. The OS services this interrupt by

invoking a handler routine, which blocks the spinning

thread and moves it to the end of the run queue, thus

allowing another thread to execute. The spinning thread

resumes execution when it returns to the head of the run

queue and the OS dispatcher selects it to run again.
The spin-then-yield mechanism is similar to the soft-

ware-level two-phase waiting algorithm in which the thread

spins for a certain number of iterations and then invokes the

yield system call to relinquish the processor; the differ-

ence is that our approach can automatically convert

spinning to two-phase waiting, thus simplifying the job of

programmers.
Since we do not have access to the Solaris source code,

we cannot directly implement the OS support for spin-then-

yield in our simulator. Instead, we emulate it as follows.

When the hardware detects that a thread has spun for
N iterations, we force the thread to jump to a routine, called
force_to_yield, by setting the program counter of the
thread’s processor to the start of this routine. Within
force_to_yield, the thread first saves its current PC,
and then invokes the yield system call, thus blocking itself.
When the yield system call returns (i.e., the blocked thread
returns to the head of the run queue and the OS dispatcher
selects it to run again), the thread jumps back to the saved PC,
thus resuming the interrupted spin loop. The spin detection
hardware also resets its counter for the spin loop iterations. In
our implementation, we hardwire the force_to_yield

routine to start at virtual address 0x10000 and span only a few
bytes. This address range is unused by all Solaris programs
and, thus, it does not affect the code or data of any program.

We evaluate the performance effects of spin-then-yield on
a 2-processor system running simultaneously two SPEC
OMP benchmarks, Art and Gafort. Each benchmark uses
two OpenMP threads. We vary the number of iterations N
that a thread is allowed to spin before blocking from 5,000 to
25,000 with increments of 5,000. For each value of N , we run
the workload until both benchmarks finish one iteration of
their major loop (see Section 4), and measure performance as
the reciprocal of the execution time. In Fig. 5, for each value of
N , we plot the system performance normalized to the
performance of a system that does not implement spin-
then-yield, i.e., N is infinity. We see that spin-then-yield

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 6, JUNE 2006

Fig. 4. Total versus useful instructions for the scientific and commercial workloads.

greatly improves performance. The system obtains the
highest performance whenN is 10,000 (16.4 percent speedup
compared to not using spin-then-yield); beyond 10,000, the
benefits of spin-then-yield drop gradually.

We can design similar techniques to improve scheduling
in virtual machine systems without modifying guest
operating systems. When our hardware detects spinning,
the VMM can choose to deschedule the spinning virtual
CPU that is waiting on a synchronization object (e.g., a lock)
and select another virtual CPU within that VM to run.
When the preempted virtual CPU is rescheduled at a future
time, it may then successfully acquire the lock in contention
if it has been released by another virtual CPU in the interim.

5.2 Power Management

An extreme form of scheduling is to turn off power when a
processor detects that a thread is spinning. Alternatively,
we can perform dynamic voltage scaling: the processor can
switch to a low power mode when a thread is spinning, and
switch back to the normal mode when the thread stops
spinning. This scheme achieves similar effects to Intel’s
HALT instruction [6] and ARM’s wait/signal instruction
pair [18]; the difference is that it requires no software
modification.

To support detecting when a thread stops spinning, we
assume a shared-memory multiprocessor system with an
invalidation-based cache coherence protocol; however, our
design can be easily adapted to other types of system. A
thread can exit a spin loop only if it observes a change to its
observable state, and this is possible only if some other
thread or I/O device modifies a cache block accessed within
the spin loop. To track cache blocks accessed within a spin
loop, we use an eight-entry load address cache (LAC). If a
processor detects that its current thread has spun for one
iteration (i.e., it commits a BCT the second time) and if the
BCT is at the top of the SDT, the processor sets a
try_suspend bit to one, and then starts recording the
block addresses of subsequent loads into the LAC. If the
processor detects a second iteration of the spin loop, it
switches to a low power mode and resets the try_sus-

pend bit. The cache controller then probes the LAC for
every invalidation it receives. On a match, the spinning
thread would potentially stop spinning. Thus, the processor
switches back to the normal power mode and clears the
LAC. The LAC could overflow before the processor
switched to the low power mode. If so, any invalidation
will cause the processor to switch back to its normal power
mode. The processor also switches back to the normal
power node and clears the LAC on every interrupt. The

operation of the LAC is similar to the load-locked store-
conditional primitives in Alpha processors that provide
support for atomic instruction sequences [19].

A subtle complication may arise when a thread spins for
only a short period of time. Due to deep pipelines and out-
of-order execution, the processor can receive an invalida-
tion that will cause its thread to stop spinning well before it
switches to the low power mode. Thus, after the cache
controller starts probing the LAC, it will never see the
relevant invalidation. Therefore, the processor may never
switch back to the normal power mode.

To solve this problem, we make the following additions
to our design. For each load that the processor issues, it
records the issue time in the load’s reorder buffer entry (or
load queue entry depending on the architecture). The
processor also updates a timestamp when it receives any
invalidation from another processor. When a load commits,
the processor compares the load issue time and the
timestamp, and sets a recv_invalidate bit to one if the
load was issued earlier. Upon reaching the BCT for the third
time, the processor switches to the low power mode only if
recv_invalidate is zero. Otherwise, it clears the LAC
and recv_invalidate, and stays in the normal power
mode. Note that this implementation is conservative in that
any invalidation can prevent the processor from switching
to the low power mode. A more precise implementation
would monitor only the addresses observable from within
the spin loop. However, our simple implementation is
sufficient to serve as a proof of concept.

Since our simulator does not yet have a power model, we
evaluate our design by computing the fraction of time that
processors can stay in the low power mode. For a 16-
processor system, we compute the total system time by
aggregating the total time that a workload spends on each
processor, and the total suspension time by aggregating the
time that each processor stays in the low power mode
during the entire execution of the workload. Due to space
limitations, we show results for a representative subset of
our workloads. We obtain the total suspension time divided
by the total system time as follows: Fma3d 52 percent,
Water-Spatial 39 percent, static Web server 57 percent,
and Java server 13 percent. These results indicate that, by
detecting spinning, we could achieve significant power
savings during the executions of these workloads.

There are two sources of overhead for our power
management scheme. First, our power management hard-
ware consumes a small but nonzero amount of power (i.e.,
much less than the power consumed by a spinning
processor). Thus, it is beneficial only if we can detect a
significant amount of spinning. Second, switching power
modes introduces extra overhead (e.g., time) and can be
beneficial only if the overhead is relatively small. Thus, we
experimented to see whether the time that a processor stays
in the low (or normal) power mode is long enough to
outweigh a reasonable overhead of switching the power
mode. We refer to the period during which a processor is in
the normal mode as a run, and the period during which it is
in the low power mode as a gap. In Fig. 6, we show the
distributions of the run and gap lengths for each workload.
For a given time interval on the x-axis, the y-axis shows the
fraction of runs (or gaps) whose length is within that

LI ET AL.: SPIN DETECTION HARDWARE FOR IMPROVED MANAGEMENT OF MULTITHREADED SYSTEMS 9

Fig. 5. Results for spin-then-yield.

interval. We observe that the workloads all have a
significant portion (> 50 percent) of their runs and gaps
longer than 500 cycles, which indicates that they can
tolerate the overhead of sophisticated power management
techniques.

6 LIVELOCK DETECTION

In this section, we discuss how we extend our spin detector
to support livelock detection. From the hardware’s per-
spective, a program is livelocked if the program indefinitely
executes instructions, but makes no forward progress in its
computation. Our livelock definition encompasses certain
situations that software may otherwise consider to be
deadlock. For example, when multiple threads of a program
wait on each other in a circular fashion, we consider the
program livelocked, instead of deadlocked, because it
continues to execute instructions.

6.1 Architectural Support for Livelock Detection

Recently, Li et al. [20] proposed Pulse, an operating system
mechanism that dynamically detects deadlock (or livelock
in our terminology). An assumption of Pulse is that all
threads involved in a deadlock are blocked. The design of
our spin detector motivates us to extend Pulse to detect
deadlocks involving spinning threads. In this paper, we
focus on livelocks/deadlocks that consist of only spinning
threads and no blocked threads.

Intuitively, if all threads of a program are simultaneously
spinning, then the program is livelocked. Nevertheless, a
program could have a subset of its threads livelocked while
the rest still moves forward. Thus, detecting livelock
involves two parts: The OS specifies a group of threads of
interest, and the hardware detects if each thread in the
group is spinning. Simultaneous spinning of all threads,
however, is not sufficient for claiming livelock; the OS also
needs to guarantee that no thread outside the group nor any
future I/O event could cause a spinning thread to stop
spinning. Such guarantees may not be easy to obtain in
general, but may be reasonable in some situations. For
example, lock-induced livelocks often have well-defined
thread groups competing for locks. A thread can stop
spinning only if another thread in the same group releases a
lock; no thread outside the group or I/O can affect the lock
on which the thread spins.

Using the spin detector, our hardware checks if a group of
threads spin simultaneously. Assume for now that the
number of threads in the group (T) is less than or equal to
the number of processors (P) in the system, and all T threads
run concurrently on different processors. The problem with

detecting simultaneous spinning at any physical time is the
presence of in-flight invalidation requests that could cause
some threads to stop spinning at a later time. To avoid this
problem, we implement logical time by leveraging our
invalidation-based broadcast snooping cache coherence
protocol. For every processor that runs a thread in the group,
we initialize its logical time (a 64-bit integer) to zero.
Whenever a processor observes a cache invalidation request,
it increments its logical time by one. Using this logical time
design ensures that no in-flight invalidation requests exist
when a group of threads are spinning simultaneously.

To support detection of simultaneous spinning, we
extend each SDT entry with a time field. When a processor
inserts a new entry into its SDT, it sets the entry’s time to
the processor’s current logical time. When the processor
detects a spin loop, the corresponding SDT entry’s time and
the current logical time together form the interval in which
the thread was spinning. A processor sends this interval to
the OS (e.g., via an interrupt) or a system service controller
(like the one in Sun’s Starfire [21]) whenever it detects
spinning. The OS or the controller keeps for each thread the
most recent interval it receives and checks periodically if all
the T threads’ intervals intersect. If so, they have been
spinning simultaneously.

We now consider the case that T is greater than P . The
challenge is that the T threads never all run at the same
logical time and, thus, their spin intervals may never
intersect.3 To overcome this, we include the SDT and RUB
as part of a thread’s state that the OS saves and restores at a
context switch. If the OS switches a thread out while it is
spinning and switches it back in later, based on the restored
SDT and RUB, the processor can determine that the thread
has been spinning since the last time it was running until
now (i.e., the spin interval includes the period during which
the thread is not running). Thus, if the T threads are
livelocked, eventually the system can detect that they are
spinning simultaneously.

6.2 Evaluation

Since livelock does not occur in our workloads, we create a
microbenchmark, called circular lock, to evaluate our
livelock detection mechanism. The microbenchmark imple-
ments T threads, each of which holds a lock (Pthreads spin
lock) while waiting for a lock that another thread holds, and
all the locks form a circular dependence chain. We evaluate
our mechanism using Simics/x86 1.6.11 running Linux
kernel 2.6.3. We add a system call to Linux, which allows a
user program to specify a group of threads (PIDs) for

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 6, JUNE 2006

Fig. 6. Distribution of run and gap lengths.

3. In a multiprogrammed system, this can also be true even when T � P .

livelock monitoring. We modify Linux’s context switch
code to save and restore a thread’s SDT and RUB.

We run circular lock on a simulated 4-processor
system with T varying from two to sixteen. Our results
show that we can detect livelock for all of these cases. In
Fig. 7, we plot the number of spinning threads in the system
as a function of logical time for T ¼ 4. We see that the
number of spinning threads that our hardware detects
increases as logical time progresses and, finally, the
hardware detects livelock when all threads spin simulta-
neously at logical time 50,495. Moreover, by running
contended lock (see Section 4.2), we verify that our
mechanism does not generate false alarms of livelock when
it does not exist.

We also evaluate the context switch overhead introduced
by saving and restoring the SDT and RUB. Since we do not yet
have a detailed timing model for the Simics/x86 simulator,
we measure the number of dynamic instructions, instead of
time, for each context switch. We measure from the start of the
switch_to function in the Linux scheduler to the execution
of the first instruction of the next process that the scheduler
selects to run. Over 1,000 context switches, an average Linux
context switch executes 98 instructions, while spin detection
only increases it to 116 instructions.

7 ACCURATE HARDWARE PERFORMANCE

COUNTERS

In this section, we extend our spin detector to design
accurate hardware performance counters.

7.1 Useful IPC

Both hardware and software often rely on performance
counters to make dynamic decisions. For example, to save
power, the processor can dynamically resize its issue queue
based on online calculation of IPC [22]. IPC is a widely used
performance metric for single-threaded uniprocessors, as
well as multithreaded systems (SMT and multiprocessors)
[23], [24], [25], [26]. However, spinning can lead to
arbitrarily inflated IPC numbers that mismatch actual
system performance. For example, a processor spinning
on a lock can achieve high IPC while doing no useful work.
To accurately measure the performance of multithreaded
systems, we propose useful IPC (uIPC), which counts only
useful (non-spinning) instructions that processors commit
per cycle.

We extend our spin detector to provide a new
performance counter, called PerfCtr-SpinInstrs, which
counts the number of spinning instructions committed by
the processor. To compute uIPC, we subtract PerfCtr-
SpinInstrs from the total number of instructions and divide

it by the number of cycles. To count spinning instructions,
we add a counter to each SDT entry. When the processor
inserts a new entry into the SDT, it initializes the entry’s
counter to zero. When an instruction commits, all SDT
entries increment their counters by one. When a processor
detects spinning for an SDT entry, it adds that counter value
to PerfCtr-SpinInstrs. To avoid double-counting of spins
because of nested loops, when the processor detects
spinning for an SDT entry, it subtracts the counter in the
entry from all entries below it in the SDT. Finally, it resets
the entry’s counter to zero and pops all entries above it.

7.2 Evaluation

We now evaluate uIPC and verify that it tracks performance
more accurately than IPC. The goal of our evaluation is not
to make conclusions about the performance of any system
or application, but rather to show how IPC can be
misleading in the presence of spinning and how uIPC
better tracks performance. Due to space limitations, we only
show results for a representative subset of the workloads:
Fma3d, Water-Spatial, static Web server, and Java
server.

In Fig. 8, we plot performance (reciprocal of runtime),
IPC, and uIPC as a function of the number of processors in
the system for our workloads. All metrics are normalized to
their 1-processor values. IPC and uIPC are sums of these
quantities across all processors.

For Fma3d and Water-Spatial, our results show that
uIPC is linearly correlated with performance, while IPC is
not. When the number of processors increases, IPC shows a
drastic increase, completely disproportionate to the im-
provement of performance. Thus, if we use performance
counters that do not distinguish spinning instructions, we
would falsely assume that performance improves greatly
even though the actual improvement is only moderate.

For static Web server and Java server, we see that IPC
and uIPC are almost the same from one to eight processors.
This is because these workloads use mostly blocking
synchronization in the user-level code and do not have
much spinning. However, for 16 processors, IPC is higher
than uIPC because much more spinning occurs in the
Solaris kernel when the processor count increases to 16 (as
we have seen in Fig. 4).

For static Web server, uIPC is not linear with perfor-
mance. Moreover, from 8 to 16 processors, uIPC increases
while actual performance drops. Our results show that
when the number of processors increases from 4 to 8 and 16,
this workload executes significantly more useful instruc-
tions in the OS kernel. This causes uIPC to increase even
when performance decreases. The increased kernel instruc-
tions come from both the httpd threads of the Apache Web
server and the sched process (PID 0) of the Solaris kernel.
As the number of processors increases, the number of
httpd threads in the system also increases, which causes
both httpd and sched to execute more instructions in the
kernel dispatcher.

To isolate the performance of httpd, in Fig. 9a, we replot
our results by counting only httpd instructions. We make
three observations from this analysis. First, IPC and uIPC
are almost equal in all the systems. This indicates that most
spinning instructions come from the sched process.
Second, uIPC now increases (or decreases) as performance
increases (or decreases). Thus, the sched process was the
major cause for the uIPC-performance mismatch we

LI ET AL.: SPIN DETECTION HARDWARE FOR IMPROVED MANAGEMENT OF MULTITHREADED SYSTEMS 11

Fig. 7. Results for livelock detection.

observed earlier. Finally, uIPC is, however, still not linearly
correlated with performance. We hypothesized that this
was due to the more kernel instructions that httpd

executes in the 8-processor and 16-processor systems than
in the other systems. To verify our hypothesis, in Fig. 9b, we
replot the results for only the user-level instructions in
httpd. We see that both uIPC and IPC now achieve nearly
linear correlation with performance. In practice, perfor-
mance analysts can do similar analysis as above. Whether to
aggregate the performance counters of different threads
depends on which aspects of the system (e.g., OS or
application) the analysts want to study.

For the Java server workload, uIPC reflects performance
directly, but not linearly. The nonlinear correlation is due to
the increased number of kernel instructions as the number
of processors increases, similar to what we see in the static
Web server workload.

8 RELATED WORK

We present related work on hardware synchronization
support, livelock detection, and multithreaded system
performance analysis.

8.1 Hardware Synchronization Support

Tullsen et al. [27] proposed hardware blocking locks to
dynamically suspend threads that would otherwise spin.
Keckler et al. [28] used register full/empty bits to enable
threads waiting on shared data to stall rather than spin.

McDowell et al. [29] proposed hardware-lock-then-block for
synchronization, which is similar to our spin-then-yield
mechanism. Intel IA-32 provides the HALT and PAUSE
instructions to save power and improve spin loop perfor-
mance [6]. ARM provides a wait/signal instruction pair to
save power for spin locks [18]. The IBM POWER5 allows
software to set lower scheduling priorities for spinning
threads [30]. The Thrifty Barrier [31] allows software to
choose a low power mode when entering a spin lock
barrier. To benefit from these designs, legacy code requires
recoding and recompilation, which places a burden on
programmers and introduces costs that could outweigh
their benefits [32]. In contrast, our mechanisms require no
modification to applications.

8.2 Livelock Detection

Conventionally, people prove liveness properties for multi-
threaded programs using static techniques such as temporal
logic [33], model checking [34], and reachability analysis
[35]. Recent work by Engler and Ashcraft [36] described a
static tool to detect deadlocks in large multithreaded
systems. Dynamically, indirect approaches are often used
to infer potential livelock situations. For example, discard-
ing packets due to queue overflow could imply livelock
[37]. Compared to the indirect approaches, our hardware
support can provide more accurate information about
livelock without the need of knowing program semantics.
Recently, Li et al. [20] proposed Pulse, a dynamic mechan-
ism that can detect deadlocks involving only blocked

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 6, JUNE 2006

Fig. 8. Useful IPC results.

Fig. 9. Useful IPC results for the httpd process. (a) User and kernel instructions of httpd. (b) User-level instructions only of httpd.

threads. Our hardware support complements Pulse by
enabling detection of deadlocks involving spinning threads.

8.3 Multithreaded System Performance Analysis

Redstone [32] showed the importance of studying spinning
on SMT and evaluated spinning in the OS kernel. Nayfeh et al.
[38] discussed that synchronization can cause problems for
IPC when used to evaluate multiprocessor performance, but
found that IPC tracked performance in their experiments
because their workloads did not have much spinning. Similar
to us, Yamauchi et al. [26] defined effective IPC and used it to
evaluate a single-chip multiprocessor. However, they did not
describe how they identified spinning instructions. Recently,
Lepak et al. [39] studied how to redeem IPC as a valid metric
for multithreaded systems. However, they did not consider
the negative impact of spinning on the accuracy of IPC. To
analyze spin lock performance, many tools use source
instrumentation [40], [41] or execution traces [42] to identify
spins, or simple hardware counters to estimate spinning costs
[43], whereas our hardware spin detector releases the burden
on programmers and supports unmodified software.

9 CONCLUSIONS

Spinning occurs extensively in multithreaded applications
and operating systems. Detecting spinning is important for
identifying performance bottlenecks and program bugs. In
this paper, we defined general conditions for identifying
spinning. Based on these conditions, we developed efficient
hardware that can detect spinning in unmodified programs.
We showed how to extend our hardware to improve
scheduling and power management by not allocating
resources to spinning threads or virtual machines. To
facilitate debugging, we applied our hardware to support
dynamic detection of livelock in multithreaded programs.
To improve performance monitoring, we developed per-
formance counters that accurately reflect system perfor-
mance by factoring out spinning instructions. Using full-
system simulation with SPEC OMP, SPLASH-2, and
Wisconsin commercial workloads, we demonstrated that
our mechanisms can effectively improve the management
of multithreaded systems.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their
comments and suggestions on the early draft of this paper.
They thank David Becker and Jaidev Patwardhan for their
help with the experiments. This work is supported in part by
the US National Science Foundation (CCR- 0312561, EIA-
9972879, CCR-0204367, CCR-0208920, and CCR-0309164),
Intel, IBM, Microsoft, and the Duke University Graduate
School. Daniel J. Sorin is supported by a Warren Faculty
Scholarship.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” Proc. 20th ACM Symp. Operating System Principles,
pp. 164-177, Oct. 2003.

[2] R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C. Martins, A.V.
Anderson, S.M. Bennett, A. Kägi, F.H. Leung, and L. Smith, “Intel
Virtualization Technology,” Computer, vol. 38, no. 5, pp. 48-56,
May 2005.

[3] C.A. Waldspurger, “Memory Resource Management in VMware
ESX Server,” Proc. Fifth Symp. Operating Systems Design and
Implementation, pp. 181-194, Dec. 2002.

[4] A. Whitaker, M. Shaw, and S.D. Gribble, “Scale and Performance
in the Denali Isolation Kernel,” Proc. Fifth Symp. Operating Systems
Design and Implementation, pp. 195-210, Dec. 2002.

[5] VMware, Inc., “High CPU Utilization of Inactive Virtual Ma-
chines,” VMWare Knowledge Base, Answer ID 1077, http://
www.vmware.com/support/kb/enduser/std_adp.php?p_fa
qid=1077, 2006.

[6] Intel, “Using Spin-Loops on Intel Pentium 4 Processor and Intel
Xeon Processor,”Intel Corp., Order Number: 248674-002, May 2001.

[7] SPEC, “SPEC OpenMP Benchmark Suite V3. 0,” http://
www.spec.org/omp, Dec. 2003.

[8] A. Whitaker, S.D. Gribble, and M. Shaw, “Rethinking the Design
of Virtual Machine Monitors,” Computer, vol. 38, no. 5, pp. 57-62,
May 2005.

[9] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations,” Proc. 22nd Ann. Int’l Symp. Computer Architecture,
pp. 24-37, June 1995.

[10] E. Artiaga, N. Navarro, X. Martorell, and Y. Becerra, “Implement-
ing PARMACS Macros for Shared Memory Multiprocessor
Environments,” Technical Report UPC-DAC-1997-07, Dept. of
Computer Architecture, Polytechnic Univ. of Catalunya, Jan. 1997.

[11] A.R. Karlin, K. Li, M.S. Manasse, and S. Owicki, “Empirical
Studies of Competitive Spinning for a Shared-Memory Multi-
processor,” Proc. 13th ACM Symp. Operating System Principles,
pp. 41-55, Oct. 1991.

[12] B.-H. Lim and A. Agarwal, “Waiting Algorithms for Synchroniza-
tion in Large-Scale Multiprocessors,” ACM Trans. Computer
Systems, vol. 11, no. 3, pp. 253-294, Aug. 1993.

[13] K.M. Lepak and M.H. Lipasti, “Silent Stores for Free,” Proc. 33rd
Ann. IEEE/ACM Int’l Symp. Microarchitecture, pp. 22-31, Dec. 2000.

[14] M.M.K. Martin, D.J. Sorin, B.M. Beckmann, M.R. Marty, M. Xu,
A.R. Alameldeen, K.E. Moore, M.D. Hill, and D.A. Wood, “Multi-
facet’s General Execution-Driven Multiprocessor Simulator
(GEMS) Toolset,” Computer Architecture News, vol. 33, no. 4, pp.
92-99, Sept. 2005.

[15] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.
Hållberg, J. Högberg, F. Larsson, A. Moestedt, and B. Werner,
“Simics: A Full System Simulation Platform,” Computer, vol. 35,
no. 2, pp. 50-58, Feb. 2002.

[16] C.J. Mauer, M.D. Hill, and D.A. Wood, “Full System Timing-First
Simulation,” Proc. 2002 ACM Sigmetrics Conf. Measurement and
Modeling of Computer Systems, pp. 108-116, June 2002.

[17] A.R. Alameldeen, M.M.K. Martin, C.J. Mauer, K.E. Moore, M. Xu,
M.D. Hill, D.A. Wood, and D.J. Sorin, “Simulating a $2M
Commercial Server on a $2K PC,” Computer, vol. 36, no. 2,
pp. 50-57, Feb. 2003.

[18] J. Goodacre and A.N. Sloss, “Parallelism and the Arm Instruction
Set Architecture,” Computer, vol. 38, no. 7, pp. 42-50, July 2005.

[19] Compaq, Alpha 21264 Microprocessor Hardware Reference Manual,
Compaq Computer Corp., July 1999.

[20] T. Li, C.S. Ellis, A.R. Lebeck, and D.J. Sorin, “Pulse: A Dynamic
Deadlock Detection Mechanism Using Speculative Execution,”
Proc. 2005 USENIX Ann. Technical Conf., pp. 31-44, Apr. 2005.

[21] A. Charlesworth, “Starfire: Extending the SMP Envelope,” IEEE
Micro, vol. 18, no. 1, pp. 39-49, Jan./Feb. 1998.

[22] D. Folegnani and A. González, “Energy-Effective Issue Logic,” Proc.
28th Ann. Int’l Symp. Computer Architecture, pp. 230-239, July 2001.

[23] J.L. Lo, L.A. Barroso, S.J. Eggers, K. Gharachorloo, H.M. Levy, and
S.S. Parekh, “An Analysis of Database Workload Performance on
Simultaneous Multithreaded Processors,” Proc. 25th Ann. Int’l
Symp. Computer Architecture, pp. 39-50, June 1998.

[24] K. Olukotun, B.A. Nayfeh, L. Hammond, K. Wilson, and K.-Y.
Chang, “The Case for a Single-Chip Multiprocessor,” Proc. Seventh
Int’l Conf. Architectural Support for Programming Languages and
Operating Systems, Oct. 1996.

[25] D.M. Tullsen, S.J. Eggers, J.S. Emer, H.M. Levy, J.L. Lo, and R.L.
Stamm, “Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor,” Proc.
23rd Ann. Int’l Symp. Computer Architecture, pp. 191-202, May 1996.

[26] T. Yamauchi, L. Hammond, K. Olukotun, and K. Arimoto, “A
Single Chip Multiprocessor Integrated with High Density
DRAM,” IEICE Trans. Electronics, vol. E82-C, no. 8, pp. 1567-
1577, Aug. 1999.

LI ET AL.: SPIN DETECTION HARDWARE FOR IMPROVED MANAGEMENT OF MULTITHREADED SYSTEMS 13

[27] D.M. Tullsen, J.L. Lo, S.J. Eggers, and H.M. Levy, “Supporting
Fine-Grained Synchronization on a Simultaneous Multithreading
Processor,” Proc. Fifth IEEE Symp. High-Performance Computer
Architecture, pp. 54-58, Jan. 1999.

[28] S.W. Keckler, W.J. Dally, D. Maskit, N.P. Carter, A. Chang, and
W.S. Lee, “Exploiting Fine-Grain Thread Level Parallelism on the
MIT Multi-ALU Processor,” Proc. 25th Ann. Int’l Symp. Computer
Architecture, pp. 306-317, June 1998.

[29] L.K. McDowell, S.J. Eggers, and S.D. Gribble, “Improving Server
Software Support for Simultaneous Multithreaded Processors,”
Proc. Ninth ACM SIGPLAN Symp. Principles and Practice of Parallel
Programming (PPOPP), pp. 37-48, June 2003.

[30] R. Kalla, B. Sinharoy, and J.M. Tendler, “IBM POWER5 Chip: A
Dual-Core Multithreaded Processor,” IEEE Micro, vol. 24, no. 2,
pp. 40-47, Mar./Apr. 2004.

[31] J. Li, J.F. Martinez, and M.C. Huang, “The Thrifty Barrier: Energy-
Aware Synchronization in Shared-Memory Multiprocessors,”
Proc. 10th IEEE Symp. High-Performance Computer Architecture,
Feb. 2004.

[32] J.M. Redstone, “An Analysis of Software Interface Issues for SMT
Processors,” PhD dissertation, Univ. of Washington, Dec. 2002.

[33] S. Owicki and L. Lamport, “Proving Liveness Properties of
Concurrent Programs,” ACM Trans. Programming Languages and
Systems, vol. 4, no. 3, pp. 455-495, July 1982.

[34] G.J. Holzmann, “The Model Checker SPIN,” IEEE Trans. Software
Eng., vol. 23, no. 5, pp. 279-295, May 1997.

[35] S.C. Cheung and J. Kramer, “Context Constraints for Composi-
tional Reachability Analysis,” ACM Trans. Software Eng. and
Methodology, vol. 5, no. 4, pp. 334-377, Oct. 1996.

[36] D. Engler and K. Ashcraft, “RacerX: Effective, Static Detection of
Race Conditions and Deadlock,” Proc. 20th ACM Symp. Operating
System Principles, pp. 237-252, Oct. 2003.

[37] J.C. Mogul and K.K. Ramakrishnan, “Eliminating Receive Live-
lock in an Interrupt-Driven Kernel,” ACM Trans. Computer
Systems, vol. 15, no. 3, pp. 217-252, Aug. 1997.

[38] B.A. Nayfeh, L. Hammond, and K. Olukotun, “Evaluation of
Design Alternatives for a Multiprocessor Microprocessor,” Proc.
23rd Ann. Int’l Symp. Computer Architecture, pp. 67-77, May 1996.

[39] K.M. Lepak, H.W. Cain, and M.H. Lipasti, “Redeeming IPC as a
Performance Metric for Multithreaded Programs,” Proc. Int’l Conf.
Parallel Architectures and Compilation Techniques, Sept. 2003.

[40] R. Bryant and J. Hawkes, “Lockmeter: Highly Informative
Instrumentation for Spin Locks in the Linux Kernel,” Proc. Fourth
Ann. Linux Showcase & Conf., pp. 271-282, Oct. 2000.

[41] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B.
Irvin, K.L. Karavanic, K. Kunchithapadam, and T. Newhall, “The
Paradyn Parallel Performance Measurement Tools,” Computer,
vol. 28, no. 11, pp. 37-46, Nov. 1995.

[42] R.W. Wisniewski and B. Rosenburg, “Efficient, Unified, and
Scalable Performance Monitoring for Multiprocessor Operating
Systems,” Proc. 2003 ACM/IEEE Conf. Supercomputing, pp. 3-16,
Nov. 2003.

[43] Y. Solihin, V. Lam, and J. Torrellas, “Scal-Tool: Pinpointing and
Quantifying Scalability Bottlenecks in DSM Multiprocessors,”
Proc. 1999 ACM/IEEE Conf. Supercomputing, Nov. 1999.

Tong Li received the BS degree from North-
western Polytechnical University, China, the
MS degree from the University of Kentucky,
and the PhD degree from Duke University, all in
computer science. He joined Intel Labs in 2005
after completing his PhD. His research interests
are in scalable processor architectures, operat-
ing systems, applications, and their interactions.

Alvin R. Lebeck received the BS degree in
electrical and computer engineering, and the MS
and PhD degrees in computer science from the
University of Wisconsin—Madison. He is an
associate professor of computer science and of
electrical and computer engineering at Duke
University. His research interests include archi-
tectures for emerging nanotechnologies, high-
performance microarchitectures, hardware and
software techniques for improved memory hier-

archy performance, multiprocessor systems, and energy efficient
computing. He received the best paper award at the 31st IEEE/ACM
International Symposium on Microarchitecture. He is the recipient of a
1997 US National Science Foundation (NSF) CAREER Award, has
received funding from the NSF, DARPA, Intel, Compaq, Microsoft, IBM,
and is a member of ACM and a senior member of the IEEE and the IEEE
Computer Society.

Daniel J. Sorin received the BSE degree in
electrical and computer engineering from Duke
University and the MS and PhD degrees in
electrical and computer engineering from the
University of Wisconsin—Madison. He is an
assistant professor of electrical and computer
engineering and of computer science at Duke
University. His research interests include highly
available computer architecture, multithreaded
memory system design, and the architectural

impact of emerging technologies. He is the recipient of a US National
Science Foundation (NSF) CAREER Award and a Duke Warren
Faculty Scholarship. He is a member of the IEEE and the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 6, JUNE 2006

